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Abstract: The ever-evolving research in the field of antitubercular agents has led to the identification
of several new potential drug classes. Among them, 5-phenyl-furan-2-carboxylic acids have emerged
as innovative potential therapeutics, targeting iron acquisition in mycobacterial species. In our efforts
to characterize the molecular interactions between these compounds and their protein target (MbtI
from M. tuberculosis) by means of co-crystallization experiments, we unexpectedly obtained the
structure of 5-(4-nitrophenyl)furan-2-carboxylic acid (1). Herein, we describe the preparation of the
compound and its analysis by 1H NMR, 13C NMR, HRMS, and SC-XRD.

Keywords: furan; SC-XRD; synchrotron; Mycobacterium tuberculosis; antitubercular agent; iron
acquisition; MbtI

1. Introduction

Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb),
an airborne pathogen that primarily affects the lungs. In 2020, TB was the second leading
cause of death from a single infectious agent, after COVID-19 [1]. The socio-economic
repercussions of the pandemic dramatically impacted the diagnosis and treatment of TB,
resulting in an increase of the number of deaths after over a decade [1]. This uncontrolled
spread of the disease also facilitated the emergence and diffusion of new resistant mycobac-
terial strains [1]. Therefore, advances in the development of novel therapeutic options are
still critical to face the impending threat of TB. In this context, an innovative approach
would be to design anti-virulence strategies targeting specific molecular pathways required
for the establishment of the infection, although otherwise dispensable for the survival of
the pathogen. Over the last decades, a considerable number of compounds, either derived
from natural sources or obtained by chemical synthesis, have been investigated as new,
potential anti-TB candidates [2–4].

Our research group has focused its attention on targeting the siderophore-mediated
acquisition of iron in Mtb [5]. In detail, we identified a new class of furan-based inhibitors
of the salicylate synthase MbtI [6], a Mg2+-dependent enzyme that converts chorismate to
salicylate, which then acts as the building block for the biosynthesis of all siderophores. [7,8].

The furan scaffold is particularly common in antitubercular drugs. In detail, several 2,5-
substituted furans have been identified as inhibitors of a variety of mycobacterial enzymes,
including N-acetyl glutamate synthase (ArgA) [9], GlcNAc-Ins deacetylase (MshB) [10],
lysine-E-aminotransferase (LAT) [11], protein tyrosine phosphatase A (MptpA) [12,13],
and thioredoxin reductases (TrxR) [14]. In this context, 5-substituted-2-nitrofurans de-
serve a particular mention because they have been widely investigated, despite, in some
cases, their molecular target remaining unknown [15–17]. Interestingly, some of them also
showed promising activities on other bacterial species, including Neisseria gonorrhoeae, Strep-
tococcus pyogenes, and Staphylococcus aureus [18], and protozoan parasites, like Plasmodium
falciparum [19].
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Over the years, we optimized the scaffold of our furan-based compounds, identifying
promising candidates active on mycobacterial models [20–23]. A key part of our investiga-
tions was the structural study of protein-ligand complexes, which led to the definition of the
main interactions established by our compounds in the active site of the enzyme. During
one of our data acquisition sessions at the European Synchrotron Radiation Facility (ESRF)
in Grenoble (France), we ran across an unexpected diffraction pattern, which was incom-
patible with that of a protein or a simple inorganic salt. The analysis of the structure later
revealed the crystal to be the organic ligand, namely 5-(4-nitrophenyl)furan-2-carboxylic
acid (1). Despite being accidental and unsought, the obtainment of this structure was
deemed a valuable result, especially considering that 5-phenyl-furan-2-carboxylic acids
are intrinsically impervious to crystallization. This feature, which is confirmed by the
absence of reported crystal structures for these compounds, is probably due to their limited
solubility in organic and aqueous solvents, which results in their rapid precipitation and
prevents the organization of the molecules in an ordered fashion to form a crystal lattice.
Our previous results suggested that this issue could be partially overcome by derivatizing
the compounds to form methyl esters. However, this strategy prevented the study of the
molecules in their original form, essentially depriving them of the characteristic acidic
function, which imparts unique features in terms of available hydrogen-bonding sites.
Therefore, this apparently trivial crystal structure proved to be very important for the study
of the intermolecular forces and interactions of this class of compounds.

2. Results and Discussion
2.1. Chemistry

Compound 1 was prepared by an established procedure, involving a Suzuki coupling
between methyl 5-bromofuran-2-carboxylate and (4-nitrophenyl)boronic acid, followed
by a hydrolysis of the ester moiety in basic conditions (Scheme 1). The intermediate
was characterized by 1H NMR and 13C NMR, while for the final compound, the HRMS
spectrum was also acquired. The analytical data were consistent with the literature.
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Scheme 1. Synthetic procedure for the preparation of 1. Reagents and conditions: (a) Pd(PPh3)2Cl2,
2 M Na2CO3, 1,4-dioxane, 90 ◦C, overnight, N2; (b) NaOH, H2O/MeOH 2:1, reflux, 3 h.

2.2. Crystallization and Structure Determination

Compound 1 crystallized in the orthorhombic space group P212121; the asymmetric
unit contained two crystallographically independent molecules of 1, along with two waters,
and an ammonium ion. The ORTEP [24] diagram indicating the arbitrary atom-numbering
scheme used in the discussion is reported in Figure 1.

The two molecules are almost completely planar; the angle between the best mean
planes calculated for the furan and the phenyl ring is 4.1(1)◦ for the main molecule, and
6.1(1)◦ for molecule A. The torsion angles C4-C5-C6-C7 and C8-C9-N1-O4 are 3.7(4)◦ and
13.5(3)◦, respectively, while the corresponding angles in molecule A are 5.6(4)◦ and 9.6(3)◦.
The overlay of the two molecules produced an RMSD of 0.1018 and a maximum distance
between two equivalent atoms of 0.22(3) Å. All bond lengths, valence angles, and torsional
angles are within the expected limits, as shown by CSD Mogul [25]. In detail, bond length
values indicate an electron delocalization extending over the entire molecule. Interestingly,
while molecule A has a protonated carboxylic function, the main molecule features a
carboxylate anion. The significance of this discrepancy and its effects on the molecular
arrangement in space are discussed in the next paragraph.
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Figure 1. ORTEP diagram of 1, with the arbitrary atom numbering scheme. Displacement ellipsoids
are drawn at the 40% probability level.

The crystal packing is governed by a dense network of H-bonds that connect the two
molecules, the waters, and the NH4

+ cation (Figure 2A). In detail, the acidic hydrogen of
the carboxylic function of an A molecule bridges the O1 atom of a carboxylate; the two
interacting molecules are inclined at 44.7(1)◦ with respect to each other, along the direction
of the 21 helix. O1 also forms a H-bond with the O2W water, which, in turn, interacts with
the other water molecule (O1W) and the NH4

+ ion. The latter establishes contacts with
both the waters and the carbonylic oxygens O2 and O2A, which are also bridged by the
O1W water. Minor C-H···O interactions contribute to the stabilization of the network. A
complete account of the H-bonds is provided in Table 1.
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Figure 2. (A). Simplified graphical representation of the H-bond network. (B). Stick-spacefilling
model showing the π-π stacking interactions between the molecules. (C). Crystal packing viewed
along the b axis. Hydrogen atoms are omitted for the sake of clarity.

π-π Interactions between the aromatic portions of the compounds further contribute to
the crystal packing (Figure 2B). The main molecule and molecule A are alternatingly stacked
on planes inclined at 5.2(4)◦; the centroid-centroid distances, calculated for the phenyl rings,
are 3.88(1) Å and 3.60(1) Å. As shown in Figure 2C, the cell contains four pairs of molecules,
which are repeated throughout the crystal; the empty spaces between them are occupied
by the water molecules and by the NH4

+ ion. The numerous intermolecular interactions
consolidate the packing and stabilize the molecules in the solid state (Figure 2C). We may
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speculate that the presence of an ionic environment rich in solvation waters facilitated the
solubilization of the compound and promoted the formation of a tight interaction network,
which ultimately allowed the ordered organization of the molecules to form a crystal.

The Hirshfeld surface (HS) of 1 was mapped over the normalized contact distance
(dnorm), according to the following equation:

dnorm =
di − rvdW

i

rvdW
i

+
de − rvdW

e
rvdW

e

di: distance between the HS and the nearest nucleus inside the surface
de: distance between the HS and the nearest nucleus outside the surface
rvdW: van der Waals radius of the atom.

HSs were generated for both the molecules in the asymmetric unit; despite their being
non-identical, the same general concepts can be applied to both. The structural details of
the HSs are shown in Table 2.

Table 1. H-bond geometry (D: Donor, A: Acceptor), as calculated by PARST [26].

H-Bond D-H/Å H···A/Å D···A/Å D-H···A/◦

O1W-H1W···O2 0 0.976(4) 1.788(4) 2.753(2) 169(4)
C11-H11···O1W 0 0.930(2) 2.731(2) 3.657(3) 174(1)
N2-H2A···O2W 0 0.88(3) 1.89(3) 2.773(3) 176(3)
N2-H2B···O1W 0 0.99(3) 1.89(3) 2.862(3) 166(3)
N2-H2C···O2A 0 0.94(4) 1.95(4) 2.859(3) 162(3)
C11A-H11A···O2W 0 0.930(2) 2.527(2) 3.304(3) 141(1)
C3-H3···O2W I 0.930(2) 2.459(2) 3.270(3) 146(1)
C4-H4···O5A I 0.930(2) 2.536(2) 3.357(3) 147(1)
O1A-H1A···O1 II 0.96(4) 1.55(4) 2.498(2) 171(3)
N2-H2D···O2 III 0.94(3) 1.83(3) 2.765(3) 168(3)
O1W-H2W···O2A IV 0.85(4) 2.03(4) 2.856(2) 165(4)
O2W-H3W···O1 V 0.87(4) 1.88(4) 2.742(2) 167(4)
O2W-H4W···O1W VI 0.98(4) 1.89(4) 2.833(3) 161(4)

Equivalent positions: 0 x,y,z; I x−1,y + 1,z; II x + 1
2 ,3/2−y,−z; III x + 1

2 , 1
2−y,−z; IV x− 1

2 , 1
2−y,−z;

V x + 1,y−1,z; VI x + 1,y,z.

The dnorm property was visualized with a red-blue-white color scheme, based on
the length of the intermolecular contacts with respect to the sum of the van der Waals
radii (Figure 3A) [27]. The analysis of the surface revealed several intense red spots, corre-
sponding to the strong, short-range H-bonds forming the network described above. The
remaining, fainter red areas indicated the presence of minor C-H···O contacts. The shape
index (SI, Figure 3B) property mapped over the HS evidenced a generally unperturbed
structure, consistent with the planarity of the molecules. Moreover, the relevant stacking
interactions were confirmed by the typical shape and color pattern on the aromatic portions
of the SI. This observation was further supported by the curvedness plot (Figure 3C), which
evidenced a large flat area extending over both the molecules.

The two-dimensional (2D) fingerprints of the two HSs, providing a visual summary
of the contribution of each contact type and the relative area of the surface corresponding
to it, revealed the importance of the many short-range O···H/H···O contacts, represented
by the long spikes protruding towards the lower left part of the graph. The presence of
C···C contacts, indicating the π-π stacking of the aromatic rings, was confirmed by the
characteristic arrow-shaped region at the center of the plot. The high density of green
spots at 1.8–1.9 Å de/di confirmed the high contribution of these points on the HS. The
remaining significant portions of the surface were attributed to unspecific van der Waals
contacts (H···H and C···H/H···C). The main fingerprint plots related to the two HSs are
reported in Figure 4. The enrichment ratios, calculated according to Jelsch et al. [28],
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showed that O···H/H···O and C···C contacts were enriched (Exy > 1), further substantiating
the previous observations.
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Figure 3. (A). HS mapped over dnorm with a fixed color scale in the range −0.8453 au (red)—1.2461 au
(blue) for the main molecule (above) and −0.8481 au (red)—1.2111 au (blue) for molecule A (below),
based on the length of the intermolecular contacts with respect to the sum of the van der Waals
radii (red: shorter; blue: longer; white: same). (B). HS mapped over the shape-index (color scale:
−0.9957 au—0.9994 au for the main molecule; −0.9882 au—0.9924 au for molecule A). Blue areas
indicate bumps, while red regions represent hollows. (C). HS mapped over the curvedness (color
scale: −4.0490 au—0.4420 au for the main molecule; −3.8574 au—0.3755 au for molecule A). Flat
regions are colored green, while edges are blue.
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Table 2. Details of the two HSs generated for 1 (HS-0: main molecule; HS-A: molecule A).

1 V (Å3) A (Å2) G Ω

HS-0 233.21 241.21 0.760 0.314
HS-A 244.00 247.39 0.763 0.341

3. Materials and Methods
3.1. Chemistry

All reagents and solvents were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Air-sensitive reactions were performed in an inert N2 atmosphere. The course of the
reactions was followed by thin-layer chromatography (TLC) using aluminum-backed
silica gel 60 plates (0.2 mm; Merck, Darmstadt, Germany). Flash column chromatography
was performed for the purification of the crude products, when necessary, using silica
gel 60 (40–63 µm; Merck, Darmstadt, Germany) in the indicated solvent system. The
melting points were determined in open capillary tubes, with a Stuart SMP30 Melting
Point Apparatus (Cole-Parmer Stuart, Stone, UK). 1H and 13C NMR experiments were
performed on a Varian Oxford 300 MHz instrument (Varian, Palo Alto, CA, USA), operating
at 300 MHz for 1H and 75 MHz for 13C (T = 20 ◦C). Chemical shifts are expressed in ppm
(δ), and J-couplings are given in Hertz. 1H data are reported in the following order: ppm,
multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet), number of protons,
and assignment. For the sake of clarity, the arbitrary atom numbering scheme indicated
in Figure 1 for the main molecule was also used to define the signal attributions. The
high-resolution mass spectrometry (HRMS) analysis was carried out on a Q-ToF Synapt
G2-Si HDMS system (Waters, Milford, MA, USA). All relevant spectra are reported in the
Supplementary Materials.

Methyl 5-(4-nitrophenyl)furan-2-carboxylate (2). Methyl 5-bromofuran-2-carboxylate
(250 mg, 1.2 mmol), (4-nitrophenyl)boronic acid (267 mg, 1.6 mmol), and
bis(triphenylphosphine)palladium (II) dichloride (42 mg, 5% mol) were dissolved in dry
1,4-dioxane (10 mL), under a N2 atmosphere. A 2 M Na2CO3 solution (254 mg, 2.4 mmol,
1.2 mL) was then added, and the resulting mixture was stirred overnight at 90 ◦C. After
completion, the solution was cooled to room temperature and filtered on a celite pad. The
filtrate was diluted with water and extracted with ethyl acetate (3 × 4 mL). The organic
layer was dried over anhydrous Na2SO4, filtered, and concentrated in vacuo. The crude
product was purified by flash column chromatography (cyclohexane–EtOAc–DCM 8:1:1)
to afford a yellow solid. Yield: 20%. TLC (cyclohexane–EtOAc 8:2): Rf = 0.30. Mp: 194 ◦C
(dec.). 1H NMR (300 MHz, CDCl3) δ (ppm): 8.28 (d, J = 8.5 Hz, 2H, H8,10), 7.93 (d, J = 8.5 Hz,
2H, H7,11), 7.28 (d, J = 3.7 Hz, 1H, H3), 6.95 (d, J = 3.7 Hz, 1H, H4), 3.94 (s, 3H, OCH3). 13C
NMR (75 MHz, CDCl3) δ (ppm): 159.06 (C1), 154.94 (C5), 147.70 (C9), 145.44 (C2), 135.23
(C6), 125.46 (C7,11), 124.57 (C8,10), 120.12 (C3), 110.36 (C4), 52.42 (OCH3).

5-(4-Nitrophenyl)furan-2-carboxylic acid (1). To a solution of methyl 5-(4-nitrophenyl)furan-
2-carboxylate (2, 50 mg, 0.2 mmol) in a mixture of H2O (2.6 mL) and MeOH (1.3 mL) was
added NaOH (24 mg, 0.6 mmol). The reaction mixture was stirred at reflux for 3 h and
partially concentered in vacuo to remove the solvent; then, 1 M HCl was added to adjust
the pH to 3–4. The aqueous phase was extracted with EtOAc (3 × 5 mL), the combined
organic phases were dried over anhydrous Na2SO4, filtered, and evaporated under reduced
pressure to obtain the desired product as a yellow solid. No further purification was
necessary. Yield: 80%. TLC (DCM–MeOH 8:2): Rf = 0.17. Mp: 256 ◦C (dec.). 1H NMR
(300 MHz, DMSO-d6) δ (ppm): 13.35 (br s exch. D2O, 1H, COOH), 8.31 (d, J = 9.0 Hz, 2H,
H8,10), 8.04 (d, J = 9.0 Hz, 2H, H7,11), 7.44 (d, J = 3.7 Hz, 1H, H3), 7.37 (d, J = 3.7 Hz, 1H,
H4). 13C NMR (75 MHz, CDCl3) δ (ppm): 159.52 (C1), 154.21 (C5), 147.34 (C9), 146.21 (C2),
135.26 (C6), 125.67 (C7,11), 124.93 (C8,10), 120.29 (C3), 112.08 (C4). HRMS (ESI/Q-ToF): calcd.
for C11H6NO5 232.0246, found 232.0248 [M + H]+.
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3.2. X-ray Diffraction

Compound 1 crystallized in a 96-well protein crystallization plate, set up using the
sitting-drop vapor diffusion method, according to established protocols [29]. A nice rod
formed after about 2 weeks at 4 ◦C in the following conditions: 1.26 M (NH4)2SO4, 0.1 M
NaOAc buffer pH 4.5, 0.2 M NaCl. The solution also contained the target protein MbtI, at a
concentration of 23 mg/mL in 25 mM Hepes·NaOH pH 8.0, 150 mM NaCl, 1% glycerol.
The crystal was collected at 4 ◦C and cryoprotected using parathion oil, before being frozen
in liquid nitrogen. Diffraction data were acquired at the macromolecular crystallogra-
phy beamline ID23-2 of the European Synchrotron Radiation Facility (ESRF) in Grenoble
(France) [30]. ID23-2 features a focused microbeam (10 × 4 µm) at fixed energy (14.2 keV),
an MD3-UP microdiffractometer (Arinax, Moirans, France), and a Dectris Pilatus 3 X 2M
detector (Dectris AG, Baden, Switzerland). Data were collected at 100 K, using scan angles
of 1◦ (delta_phi) up to a resolution of 0.75 Å. Data processing was performed with XDS [31],
and the structure was solved based on the output file XDS_ASCII.HKL by direct methods
using SIR-2019 [32]. Iterative cycles of full-matrix least-squares refinement on F0

2 and ∆F
synthesis were carried out by SHELXL-18/3 [33] on the WinGX v.2021.3 suite [24]. The
structure was analyzed by PARST [26], Mogul [25], and Mercury 2022.2.0 [34]; the graphical
representations were rendered with ORTEP-3 v.2020.1 and Mercury [34]. HS analysis was
performed with CrystalExplorer21.5 [35]. CCDC entry 2218901 contains the supplementary
crystallographic data for this paper. A summary of the data collection and refinement
statistics is reported in Table 3; further details are reported in the Supplementary Materials.

Table 3. Summary of the crystallographic data and refinement statistics for 1.

Parameter Data

Identification code 1
Empirical formula C22H21N3O12
Formula weight 519.42
Temperature 100(2) K
Crystal system Orthorhombic
Space group P212121
Unit cell dimensions a = 7.34 Å α = 90◦

b = 7.97 Å β = 90◦

c = 39.21 Å γ = 90◦

Volume 2293.8 Å3

Z 4
Density (calculated) 1.504 Mg/m3

Absorption coefficient 0.125 mm−1

F(000) 1080
Crystal size 0.1 × 0.02 × 0.01 mm3

θ range for data collection 1.039 to 28.431◦

Index ranges −8 ≤ h ≤ 8, −10 ≤ k ≤ 10, −47 ≤ l ≤ 47
Reflections collected 29,316
Independent reflections 5065 [R(int) = 0.0553]
Refinement method Full-matrix least-squares on F2

Data/restraints/parameters 5065/0/370
Goodness-of-fit on F2 1.039
Final R indices [I > 2σ(I)] R1 = 0.0348, wR2 = 0.0836
R indices (all data) R1 = 0.0407, wR2 = 0.0878
Largest diff. peak and hole 0.319 and −0.214 eÅ−3

4. Conclusions

During a data collection session at the European Synchrotron Radiation Facility (ESRF)
in the framework of our studies on MbtI-ligand complexes, we unexpectedly obtained the
structure of 5-(4-nitrophenyl)furan-2-carboxylic acid (1). This is one of the lead compounds
in our series of furan-based inhibitors of MbtI. Considering the difficulty of growing high-
quality crystals of these compounds, we welcomed the opportunity to study the structure of
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1 by means of synchrotron diffraction data. Our analysis revealed an abundance of strong
intermolecular contacts, a complex network of H-bonds and tight π-π stacking forces. The
environment, rich in ions and water molecules, probably facilitated the interaction of the
molecules and promoted their organization in the solid state. To complete the description
of compound 1, its synthesis and analytical characterization by means of NMR and HRMS
were also described.

Supplementary Materials: Table S1. Atomic coordinates and equivalent isotropic displacement
parameters. Table S2. Bond lengths [Å] for 1. Table S3. Bond angles [◦] for 1. Table S4. Anisotropic
displacement parameters. Figure S1. 1H NMR spectrum of 2. Figure S2. 13C NMR spectrum of 2.
Figure S3. 1H NMR spectrum of 1. Figure S4. 13C NMR spectrum of 1. Figure S5. HRMS spectra of 1.
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