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Abstract: The formation of N-sulfonyl-1-aryloxy acrylimidate is described, for the first time, from
a consecutive process, which involves a CuAAC reaction, a ketenimine formation and subsequent
rearrangement between an aryl propargyl ether and a sulfonyl azide. The structure of this newly
synthesized compound was analyzed by NMR spectra and unambiguously established by X-ray
analysis. In addition, theoretical calculations, which included a Hirshfeld surface, FMO, QTAIM and
NCI indices analysis, corroborated the formation of π-π stacking interactions among aromatic rings,
as well as C-H···O interactions between vinyl hydrogens with ketone carbonyl oxygen.

Keywords: acrylimidate; sulfonyl azide; ketenimine; CuAAC reaction; crystal structure

1. Introduction

The number of applications of copper-catalyzed azide-alkyne cycloaddition (CuAAC)
is not only limited to the preparation of 1,2,3-tiazoles, but has also been extended to the
generation of interesting intermediates, such as ketenimines. In this regard, seminal works
of Chang and coworkers [1] demonstrated the potential of this reaction in the preparation
of compounds of chemical interest [2].

In connection with other synthetic studies, some time ago we investigated new meth-
ods and catalysts for selective preparation of 1-sulfonyl-1,2,3-triazoles from sulfonyl azides
and alkynes [3–5]. Derived from these studies, and as an effort to expand the uses of
this reaction to other systems, we found the formation of an unexpected product from an
aryl propargyl ether and a sulfonyl azide under conventional CuAAC reaction conditions.
Herein is described our most recent results in this area.

2. Results and Discussion

In this report, we disclose that straightforward treatment of p-toluenesulfonyl azide 2
and 1-(4-prop-2-ynyloxyphenyl)ethanone 1 in the presence of catalytic amounts of copper(I)
salicylate [5] afforded N-(p-toluenesulfonyl)-1-(4′-Acetylphenoxy)acrylimidate 3 in 29%
yield, as depicted in Scheme 1.

An important spectroscopic feature, which gave rise to the product identification, was
a signal pattern observed in the 1H NMR spectrum associated with a vinyl system, see
Figure 1 (Supplementary Materials), with two doublet signals at δ 6.18 ppm (Jac = 10.89 Hz)
and 6.67 ppm (Jab = 16.98 Hz), assigned to geminal hydrogens, as well as a doublet of
doublets signal at δ 7.39 ppm (Jab = 16.95 Hz and Jac = 10.86 Hz), corresponding to Hydrogen
on C-2 from acrylimidate moiety. On the other hand, vinyl carbon signals were located at δ
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113.2 and 127.2 ppm in 13C NMR, whereas an imidate C=N carbon signal was observed at
δ 195.1 ppm (Figure 2).
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Figure 2. 13C-NMR spectrum of imidate 3.

The structure of imidate 3 was unambiguously elucidated by X-ray crystallography.
due to compound 3 resulting in a crystalline solid. Crystallographic data and structural
refinement parameters of 3 are summarized in Table 1, and the crystal structure of com-
pound 3 is projected in Figure 3. A notable U-shaped conformation was perceived, similar
to those observed in certain aromatic urea dicarboxylic acids [6] and helicenes [7]. For
compound 3, the aromatic rings underwent an approaching which could be evidenced by
distances up to 2.944 Å between hydrogens in the toluenesulfonyl ring with hydrogens
in the acetyl phenoxy system. Moreover, these rings maintained an almost perpendicular
position, displaying a dihedral angle of 85.69◦.

Table 1. Crystallographic data for structural analysis of compound 3.

Crystal Data 3

Empirical formula C18H17NO4S
Formula weight 343.38
Temperature (K) 100(2)
Radiation type Mo Kα
Crystal system Triclinic

Space group P − 1
Unit cell dimensions (Å, ◦)

a 9.1339(4)
b 9.4474(4)
c 10.7404(4)
α 66.3790(10)
β 85.4950(10)
γ 77.8620(10)

Volume (Å3) 830.15(6)
Z 2

Density (calculated, Mg/m3) 1.374
Absorption coefficient µ (mm−1) 0.217

F(000) 360
Crystal size (mm3) 0.160 × 0.185 × 0.318

Θ range (deg) 2.070 to 27.504
Index ranges −11 ≤ h ≤ 11, −12 ≤ k ≤ 12, −13 ≤ l ≤ 13

Reflections collected 18,221
Independent reflections 3808 [R(int) = 0.0130]

Data/restraints/parameters 3808/0/219
Goodness-of-fit on F2 1.039

Final R indices [I > 2sigma(I)] R1 = 0.0298, wR2 = 0.0805
R indices (all data) R1 = 0.0306, wR2 = 0.0812

Largest diff. peak and hole (e Å−3) 0.435, −0.390
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The above-described conformation was probably due to the presence of diverse inter-
actions, highlighting π-π stacking interactions, a first Cg1···Cg1 interaction with a distance
of 3.8729(7) Å (symmetry code−x + 1, −y + 1, −z) and a second Cg2···Cg2 interaction with
a distance of 4.8878(7) Å (symmetry code −x + 2, −y + 1, −z + 1), as seen in Table 2 and
Figure 4, and C-H···O interactions between vinyl hydrogens with ketone carbonyl oxygen
(distances C3-H···O = 2.561 Å and C2-H···O 2.592 Å) which, in turn, also interacted with
an aromatic hydrogen from tosyl moiety, C14-H···O = 2.703 Å, as well as with aromatic
hydrogens from the outer acetyl phenoxy ring C8-H···O = 2.770 Å and C9-H···O = 2.922 Å.

Table 2. Hydrogen-bond geometry (Å, ◦).

D—H···A D—H H···A D···A D—H···A

C2—H2···O2 i 0.95 2.59 3.2198(14) 123.9
C3—H3B···O2 i 0.95 2.56 3.1986(16) 124.7

C2—H2···O3 0.95 2.71 3.2620(14) 117.3
C13—H13···N1 0.95 2.45 2.8398(14) 104.4

C11—H11A···O4 ii 0.98 2.63 3.5461(16) 155.5
C11—H11B···O3 iii 0.98 2.85 3.6760(15) 142.8
C17—H17···O3 iv 0.95 2.78 3.7080(14) 164.4
C9—H9···Cg2 iii 0.95 2.55 3.4644(12) 162.9

Symmetry codes: (i) x − 1, y + 1, z; (ii) x, y − 1, z; (iii) −x + 1, −y + 1, −z + 1; (iv) −x + 1, −y + 2, −z + 1.

A subsequent Hirshfeld surface analysis was determined on compound 3. A projection
of the Hirshfeld surfaces for imidate 3 mapped over dnorm (top and bottom), di, de, shape
index and curvedness are plotted in Figures 5 and 6, displaying red spots which indicate
high-intensity contacts and closest interactions being located on vinyl hydrogens along with
hydrogens from both aromatic rings. These contact zones exhibited significant C-H···O
hydrogen interactions, as seen in Figure 7. Furthermore, 2D fingerprint plots of de versus
di for compound 3 (Figure 8) allowed a visualization of hydrogen bonded interactions
with C and O atoms, noting an important contribution by H···H (41.1%) and O···H (29.1%)
contacts, confirming previous observations.
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Figure 7. Hirshfeld surface of 3 mapped with dnorm, showing potential hydrogen bond (dashed lines).

As a complement of the aforementioned, a topology study was carried out, which
included both quantum theory of atoms in molecules (QTAIM) as well as non-covalent
interaction (NCI) index. A graphical overview is presented in Figure 9, covering graphical
representations of QTAIM through Bond Critical Point (BCP), Critical Ring Point (RCP)
and Critical Cage Point (CCP), which are indicated in orange, yellow and green colors,
respectively. In the case of NCI, the blue and green iso-surfaces were placed around
aromatic ring bonds, pointing out an outstanding π-π stacking contact. In consequence,
these studies agreed with the crystallographic information.
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delineated into (b) H···H (41.1%), (c) H···O/O···H (29.1%), (d) H···C/C···H (22.3%), (e) C···C (2.8%)
and (f) C···O/O···C (2.2%) interactions.

A frontier molecular orbital (FMO) analysis for molecule 3 was verified; the HOMO
and LUMO energies were calculated at PBE1PBE/cc-pVDZ level for gaseous phase. From
these calculations, a LUMO–HOMO energy gap value of −5.150 eV for 3 was determined.
The FMO diagrams are plotted in Figure 10 and HOMO and LUMO energy values, in
conjunction with some other molecular properties, are shown in Table 3.

Table 3. HOMO-LUMO energies and values of quantum chemical parameters calculated at
PBE1PBE/cc-pVDZ level of theory.

Crystal Data 3

Etotal (a.u.) −1448.480
ELUMO (eV) −1.956
EHOMO (eV) −7.106

Electron affinity (eV) 1.956
Ionization potential (eV) 7.106

Gap Energy (eV) 5.150
Electronegativity (eV) 4.531

Chemical hardness (eV) 2.575
Chemical softness (eV−1) 0.388
Chemical potential (eV) −4.531

Electrophilicity index (eV) 3.986
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Figure 9. Weak interactions analyzed by QTAIM and NCI index (iso-surface 0.5 a.u.) for monomer
(a) and dimers (b–e) of 3, bond critical points (3, −1) in orange, ring critical points (3, +1) in yellow
and cage critical points (3, +3) in green.

Calculation of local reactivity descriptors, such as electron affinity (A), ionization
potential (I), gap energy, electronegativity (χ), chemical hardness (η), chemical softness (ζ),
chemical potential (µ) and electrophilicity index (ω) results were helpful in the interpreta-
tion of Molecular Electrostatic Potential surfaces (MEP), which are mapped in Figure 11.
In this regard, MEP projected upon an electron density iso-surface of imidate 3 was in the
range ±5.414·10−2, displaying negative charge distributions marked in red upon oxygen
atoms from both carbonyl and sulfonyl groups. This charge distribution was also observed
in the respective electronegative electrostatic potential (ESP) surface indicated in the blue
color in Figure 12. This was an important finding, because negative charge distributions
enable the referred C-H···O interactions.
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The formation of imidate 3 can be rationalized in terms of a reaction mechanism
described in Scheme 2. Cycloaddition between aryloxy alkyne 4 and sulfonyl azide 2 in
the presence of a catalytic cuprous source produces copper triazolide 5, which is cleaved
into diazo imine 6, that, after nitrogen extrusion, gives ketenimine 8, which undergoes a
rearrangement to afford the final imidate 3.
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Few examples of similar processes have been reported in literature. Acetate group
migration was detected in the synthesis of trans-α,β-unsaturated N-tosylamides from
p-toluenesulfonyl azide and diverse propargyl acetates in [8,9]. On the flip side, a set of
acrylamidines was prepared from the corresponding N,N-dialkyl propargylamines through
a 1,3-amino group migration on ketenimine intermediates in [10]. Hence, this is the first
example concerning an intramolecular aryloxy ketenimine rearrangement; wherefore,
future investigations will be driven to study in more detail this process and to broaden the
synthetic applications of this kind of intermediate.

3. Materials and Methods

The starting materials were purchased from Aldrich Chemical Co. and were used
without further purification. Copper(I) salicylate was prepared according to literature [5].
The solvents were distilled before use. Silica plates of 0.20 mm thickness were used for thin
layer chromatography. Melting points were determined with a Krüss Optronic melting
point apparatus, and they were uncorrected. 1H and 13C NMR spectra were recorded using
a Bruker Avance 300-MHz; the chemical shifts (δ) are given in ppm relative to TMS as
an internal standard (0.00). For analytical purposes, the mass spectra were recorded on
a Shimadzu GCMS-QP2010 Plus in the EI mode, 70 eV, and 200 ◦C via direct inlet probe.
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Only the molecular and parent ions (m/z) are reported. IR spectra were recorded on a
Bruker Tensor 27 (Supplementary Materials).

For the X-ray diffraction studies, crystals of compound 3 were obtained by slow
evaporation of a dilute AcOEt solution, and the reflections were acquired with a Bruker
APEX DUO diffractometer equipped with an Apex II CCD detector, Mo Kα radiation
(λ = 0.71073 Å) at 100 K. Frames were collected using omega scans and integrated with
SAINT and multi-scan absorption correction (SADABS) was applied [11]. The structure
was solved by direct methods (SHELXS-97) [12]; missing atoms were found by differ-
fence-Fourier synthesis and refined on F2 by a full-matrix least-squares procedure using
anisotropic dis-placement parameters using SHELXL [13] using the ShelXle GUI [14].
The hydrogen atoms of the C–H bonds were placed in idealized positions. The molecular
graphics were prepared using Mercury [15] and POV-Ray [16]. Crystallographic data for the
structure reported in this paper have been deposited with the Cambridge Crystallographic
Data Centre, CCDC No. 2183265 for compound 3. Copies of available materials can be
obtained free of charge on application to the Director, CCDC, 12 Union Road, Cambridge
CB2 IEZ, UK (facsimile: (44) 01223 336033); e-mail: deposit@ccdc.ac.uk.

The quantum chemical calculations were performed using Gaussian 09 program
package [17]. The crystal structure geometry was used as a starting model to optimize.
The vibration frequencies were calculated for the optimized structure in gas phase and no
imaginary frequencies were obtained. All calculations were done at PBE1PBE/cc-pVDZ
level of theory [18–20].

The Hirshfeld surface mapped with dnorm and fingerprint plots were performed with
Crystal Explorer 21.5 program [21]. The 2-D fingerprint plots were used for visualizing,
exploring and quantifying intermolecular interactions.

The Quantum Theory of Atoms in Molecules (QTAIM) [22] and non-covalent inter-
actions (NCI) [23] analysis have been performed using Multiwfn 3.8 [24] at PBE1PBE/cc-
pVDZ level of theory on the structures of 1 (monomer or dimer) in which only the positions
of the hydrogen atoms were optimized. The VMD 1.9.4 [25] and GNUplot 5.4 [26] were
used for the visualization of the results.

Synthesis of N-(p-Toluenesulfonyl)-1-(4′-acetylphenoxy)acrylimidate 3

1-(4-Prop-2-ynyloxyphenyl)ethanone 1 (0.174 g, 1.0 mmol) was added in one portion
to a solution of p-toluenesulfonyl azide 2 (0.197 g, 1.0 mmol) and copper (I) salicylate
(0.0099 g, 0.05 mmol) in CH2Cl2 (6 mL) at 0 ◦C. The resulting mixture was stirred at 0 ◦C
for 3 h and at room temperature for 3 h. Charcoal (0.05 g) was added, the mixture was
filtered through celite, and the solvent was removed under reduced pressure. Purification
by column chromatography (SiO2, hexane/AcOEt 8:2) afforded N-(p-toluenesulfonyl)-1-(4′-
acetylphenoxy)acrylimidate 3 (0.099 g, 29%) as a colorless oil. 1H NMR (300 MHz, CDCl3)
δ 7.97 (d, J = 8.7 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 7.39 (dd, Jab = 16.95 Hz, Jac = 10.86 Hz,
1H), 7.23 (d, J = 8.1 Hz, 2H), 7.16 (d, J = 8.7 Hz, 2H), 6.67 (d, Jab = 16.98 Hz, 1H), 6.18 (d,
Jac = 10.89 Hz, 1H), 2.60 (s, 3H), 2.38 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 195.0 (C), 162.7
(C), 153.3 (C), 141.6 (C), 136.3 (C), 133.2 (C), 130.6 (2xCH), 127.9 (2xCH), 127.4 (2xCH), 124.6
(2xCH), 123.2 (CH), 119.8 (CH2), 24.9 (CH3), 19.9 (CH3); IR (ATR, cm−1): 2990, 1728, 1649,
1572, 1379, 1253, 1195; HRESIMS calcd. for [C18H17NO4S + Na]+: 366.0776, found: 366.0781.

4. Conclusions

The reaction of o aryl propargyl ether 1 and p-toluenesulfonyl azide 2 in the presence
of catalytic amounts of copper(I) salicylate afforded acrylimidate 3, which was derived
from a consecutive process, which involved a CuAAC reaction, a ketenimine formation
and subsequent rearrangement. These elements suggest that this kind of compound will
enjoy widespread application.
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Supplementary Materials: The following are available online. Figure S1. FTIR spectrum for imidate
3. Figure S2. HRESIMS spectrum for imidate 3. Figure S3. 1H NMR spectrum for imidate 3 (CDCl3,
300 MHz). Figure S4. 13C{1H} NMR spectrum for imidate 3 (CDCl3, 75 MHz).
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