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Abstract: The E ring of betulin rearranges and forms a cyclic ether when treated with an acid.
Treatment of betulin with iodine generated hydrogen iodide in situ, which went on to promote the
rearrangement at C-19 and C-20, followed by cyclization to form allobetulin. A reaction of allobetulin
with 2-furoyl chloride yielded 19β,28-Epoxy-18α-olean-3β-ol-2-furoate.
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1. Introduction

Betulin (lup-20(29)-ene-3β,28-diol), a pentacyclic triterpenoid, is an abundant, bio-
logically active secondary metabolite that is found in birch species (Betula ssp.) [1]. The
amount of betulin from different birch species ranges from more than 15% of dry weight in
B. populifolia and B. payrifera to about 30% in B. verrucosa. Betulin is readily extracted from
the bark of Betula ssp. and is an attractive starting material for making different derivatives,
including betulinic acid. Betulinic acid and other betulin derivatives have been shown to
exhibit multiple biological activities [2–17]. In addition to the selective oxidation of betulin
to produce betulinic acid, other modifications have been carried out at C-3 and C-28 of
betulin to make novel compounds for biological testing. Allobetulin (19β,28-Epoxy-18α-
olean-3β-ol), (Scheme 1), is one of the compounds that is readily obtained from betulin.
Acid-catalyzed rearrangement of betulin produces allobetulin in one step and in good
yield, making it a valuable candidate for additional modifications. The ease with which
betulin is converted to allobetulin has led to the syntheses of novel compounds that include
esters, amines, and glycosides by transforming the 3-OH of allobetulin, along with novel
modifications to ring A [18,19]. In our study, allobetulin was obtained from betulin by using
hydrogen iodide as a catalyst for the transformation. The hydrogen iodide was generated
in solution by the reaction of the primary alcohol on the substrate, betulin, with iodine.
The synthesis of 19β,28-Epoxy-18α-olean-3β-ol-2-furoate was accomplished by reacting
allobetulin with 2-furoyl chloride in dry dichloromethane.

2. Results and Discussion

Allobetulin was synthesized from betulin by using hydrogen iodide (Scheme 1).
The hydrogen iodide was generated in solution by reacting the C-28 hydroxy group
of the substrate with iodine. The intermediate produced was R-O-I [Scheme 2]. Pro-
tonation of a double bond generated a tertiary carbocation that underwent the Wagner–
Meerwein rearrangement.
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Green et al. used p-toluenesulfonic acid and proposed a mechanism for the rearrange-
ment and cyclization [20]. Recently, Grymel and Adamek used a tetrafluoroboric acid
diethyl ether complex to accomplish a similar transformation [21]. The iodide produced
during protonation attacks R-O-I, and as the I–I bond is being formed, a new bond develops
between oxygen and the carbocation to complete the cyclization. The reaction of iodine
with different alcohols has previously been reported [22–24]. The coupling of the first step
to the cyclization to produce the final product under mild conditions was not surprising
and was in line with past observations. Allobetulin was reacted with 2-furoyl chloride
to produce 19β,28-Epoxy-18α-olean-3β-ol-2-furoate (III). The chemical 1H-NMR chemical
shifts for most protons did not change much from those of allobetulin. The 3-Ha chemical
shift moved from 3.22 ppm to 4.79 ppm because of the ester group at that position. The
three additional aromatic protons were centered at 6.51 ppm, 7.15 ppm, and 7.59 ppm, all
as doublets of doublets with small coupling constants, in agreement with the findings of
Abraham et al. [25] and Bardsley et al. [26]. The 13C-spectra consisted of five new carbons
due to the ester -C=O at 158.71, and four aromatic carbons at 111.68 ppm, 117.32 ppm,
145.23 ppm, and 146.13 ppm.

The 13C-DEPT indicated twenty-seven carbon atoms consisting of CH, CH2 and CH3
leaving out C1′, C2′ and six quaternary carbons that are part of the triterpene skeleton.

3. Experimental

Betulin was isolated from white birch bark that was collected from York County,
Pennsylvania. Dichloromethane, iodine, 2-furoyl chloride, and solvents were purchased
from Aldrich. Dichloromethane was dried using molecular sieves (3 Å) that had been
activated at 90 ◦C. 1H and 13C spectra were obtained using a Varian Gemini 500 NMR
and recorded at 500 MHz and 125.74 MHz. The spectra are provided as Supplementary
Materials. Elemental analysis was performed by Robertson Microlit Laboratories Inc.,
Legdewood, NJ, USA. Pulverized dry bark (100 g) was suspended in 375 mL of acetic
acid: ethyl acetate: ethanol: water (1.5:1:0.5 v/v). After 48 h at room temperature, the
mixture was filtered, and the filtrate was concentrated under vacuum. The solid (17.2 g)
was recrystallized from isopropyl alcohol to give pure betulin, m.p. 252–253 ◦C, (lit. m.p.
254 ◦C) [27].

3.1. 19β,28-Epoxy-18α-olean-3β-ol (II) (Allobetulin)

To the solution of betulin (0.11 g, 0.034 mmol) in dry dichloromethane (10 mL) molec-
ular sieves (2 g) and iodine (0.04 g, 0.16 mmol) were added. The mixture was stirred at
room temperature for 16 h, followed by the addition of a 5% solution of sodium thiosulfate
(10 mL). The colorless dichloromethane layer was washed with 5% sodium bicarbonate
and then water, dried (Na2SO4) and concentrated under vacuum. The solid residue was
re-crystallized from ethyl acetate to give the product (0.79 g, 70%) as white flakes, m.p.
258–260 ◦C, (lit. m.p. 260–261 ◦C) [28]. 1H-NMR (500 MHz, Me2SO-d6) d 0.78 (s, -CH3),
0.81 (s, -CH3), 0.86 (s, -CH3), 0.93 (s, -CH3), 0.95 (s, -CH3), 0.99 (s, -2CH3), 1.25–1.94 (m,
-CH2), 3.22 (dd, J = 5.0 Hz, J = 11.5 Hz, 3-Ha), 3.46 (d, J = 7.5 Hz, H-19), 3.55 (s, 28-H), 3.8
(dd, J = 7.5 Hz, J = 1.5 Hz, H-19). 13C-NMR (125.74 MHz, Me2SO-d6) d 13.52, 15.39, 15.72,
16.49, 18.27, 21.00, 24.56, 26.27, 26.45, 26.46, 27.42, 27.99, 28.82, 32.72, 33.92, 34.16, 36.28,
36.76, 37.27, 38.90, 38.93, 40.62, 40.72, 41.49, 46.84, 51.09, 55.50, 71.28 (C-28), 78.97 (C-3),
87.95 (C-19).

3.2. 19β,28-Epoxy-18α-olean-3β-ol-2-furoate (III)

2-Furoyl chloride (0.13 g, 1 mmol) was added dropwise over 5 min to a stirred ice-cold
solution of 19β,28-Epoxy-18α-olean-3β-ol (0.22 g, 0.5 mmol) in dry pyridine (4 mL). The
reaction mixture was kept at room temperature for 1 h. Ether (20 mL) was added, followed
by 5 mL of 1 M HCl solution. The organic layer was washed with 5 % sodium bicarbonate,
dried over anhydrous magnesium sulfate, and the ether was removed under vacuum to
give a white solid (0.22 g, 84%). Pure crystals were obtained after recrystallization from a
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mixture of ethyl acetate and hexane (m.p. 300–302 ◦C). 1H-NMR (500 MHz, Me2SO-d6) d
0.82 (s, -CH3), 0.93 (s, -CH3), 0.94 (s, -CH3), 0.95 (s, -CH3), 0.97 (s, -CH3), 01.01 (s, -CH3),
1.26–1.99 (m, -CH2), 3.46 (d, J = 7.5 Hz, H-28), 3.55 (s, 19-H), 3.80 (d, J = 6.5 Hz, H-28),
4.73 (dd, J = 9.0 Hz, J = 5.5 Hz, 3-Ha), 6.51 (dd, J = 3.5 Hz, J = 1.5 Hz, 1H, aromatic), 7.15
(dd, J = 3.50 Hz, J = 1.0 Hz, 1H, aromatic), 7.594 (dd, J = 1.5 Hz, J = 1.0 Hz, 1H, aromatic).
13C-NMR (125.74 MHz, Me2SO-d6) d 13.51, 15.73, 16.58, 16.63, 18.17, 21.04, 23.82, 24.56,
26.27, 26.44, 26.45, 28.02, 28.82, 32.73, 33.86, 34.17, 36.29, 36.76, 37.21, 38.18, 38.60, 40.66,
40.75, 41.50, 46.84, 51.02, 55.59, 71.30, 81.64, 87.98 (-O-C=O), 111.68 (C-aromatic), 117.32
(C-aromatic), 145.23 (C-aromatic), 146.13 (C-aromatic), 158.71 (C=O). C35H52O4 requires: C,
78.31%; H, 9.76%; O, 11.92%. Found: C, 78.29; H, 9.77%, O, 11.95%.

Supplementary Materials: The following supporting information can be downloaded online. Copies
of 1H NMR and 13C NMR spectra.
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