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Abstract: The novel compound 4-methyl-7-((2-((5-methyl-1,3,4-thiadiazol-2-yl)thio)ethyl)thio)-coumarin
is obtained in good yield via a two-step protocol; that is, initial synthesis of the reagent 2-((2-
chloroethyl)thio)-5-methyl-1,3,4-thiadiazole followed by alkylation of 7-mercapto-4-methylcoumarin.
The product’s structure is assigned by 1D and 2D NMR experiments and is confirmed by single-
crystal XRD.
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1. Introduction

Coumarin, or 2H-chromen-2-one, is a natural bicyclic organic compound isolated
from a variety of plants. Its derivatives have found broad applications such as fluorescent
probes [1–4], food additives [5–7], in polymer chemistry [8–11], and so on. Numerous repre-
sentatives have displayed variable bioactivity profiles [12–18], including anticancer [19–24],
anti inflammatory [25–27], anti-tuberculosis [28,29], antimicrobial [30], and many others.
Several drugs with coumarin skeleton are available on the market, such as immunosuppres-
sant scoparone, anti-inflammatory drug 8-methoxypsoralen, vasodilator carbochromen,
anticoagulants warfarin and phenprocoumon, antifungal agent osthole, anti-HIV prepara-
tus calanolide, anticancer drug flavopiridol, antibiotics novobiocin and clorobiocin, and so
on; some are shown in Figure 1.
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Figure 1. Representatives of clinically used coumarin and thiadiazole derivatives. 
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1,3,4-thiadiazole is a five-membered heterocyclic compound with three heteroatoms,
which exists as a structural subunit in a number of bioactive compounds [31–35]. Molecules
possessing thiadiazole fragment have shown anticancer [36–39], antimicrobial [40,41],
antiepileptic [42], and many other properties. Among the variety of clinically used repre-
sentatives, the antibiotics cefazolin and azamulin are shown on Figure 1.

Contrary to coumarin and thiadiazole derivatives, compounds combining both struc-
tural subunits in a common molecule are relatively poorly studied. Nevertheless, several
examples have shown a wide spectrum of biological activities, including antimicrobial [43],
antifungal [44,45], anticancer [46,47], for the treatment of Alzheimer’s disease and neurode-
generative disorders [48], suppressing allergic reactions agents [49], and many others.

Herein, we report on the synthesis and characterization of a novel coumarin derivative
possessing thiol bridged 2-mercapto-thiadiazole fragment as a substituent.

2. Results and Discussion
2.1. Synthesis

The title compound 4-methyl-7-((2-((5-methyl-1,3,4-thiadiazol-2-yl)thio)ethyl)thio)-
coumarin 3 is obtained via a two-step protocol, shown in Scheme 1. The alkylating reagent
2-((2-chloroethyl)thio)-5-methyl-1,3,4-thiadiazole 2 is prepared in a very simple and efficient
procedure. Namely, 2-mercapto-5-methyl-1,3,4-thiadiazole is stirred at room temperature
in dichloroethane (DCE) in the presence of triethylamine as a base for 48 h. The reagent is
isolated in 98% yield after column chromatography purification, but it can also be used
without purification in subsequent steps. It is important to underline that it is crucial to
avoid heating when preparing or using chloride 2 in order to avoid HCl elimination.
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Scheme 1. Synthesis of 4-methyl-7-((2-((5-methyl-1,3,4-thiadiazol-2-yl)thio)ethyl)thio)-coumarin 3.

The reaction conditions for the main reaction, the synthesis of target product 3, are
optimized. Several bases and solvents are tested and the best conversion is achieved
using lithium hexamethyldisilazide (LiHMDS) in dry THF at room temperature in an
inert atmosphere. Therefore, the starting 7-mercapto-4-methylcoumarin 1 is metallized by
LiHMDS and then alkylated with freshly prepared chloride 2 for 3 h. The target product is
isolated in 59% yield by column chromatography.

The structure of product 3 is assigned by 1D and 2D NMR spectra (see Supplemen-
tary Materials). The 1H spectrum in CDCl3 shows characteristic signals for the aromatic
coumarin protons; a doublet with 4J at 6.236 for CH-3, a doublet for CH-5, a doublet of
doublets for CH-6, and a doublet with 4J for CH-8; with the latter being overlapped with
the signal for chloroform. Both methylene groups give multiplets at a strong field, while a
singlet and a doublet with small J-constants are observed for the thiadiazole and coumarin
methyl groups, respectively. 13C spectrum show two signals each for methyl and methylene
groups, four signals for aromatic CH, and seven signals for quaternary carbons. The latter
are assigned by analyzing the specific interactions in the HMBC experiment. The ATR IR
spectrum of product 3 shows a characteristic band for lactone carbonyl at 1719 cm−1.
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2.2. Crystallography

Compound 3 appears as an orange-colored crystal (blocks) obtained by slow-evaporation
from acetonitrile. Compound 3 crystallizes in the monoclinic P21/n space group with the
following cell parameters: a = 13.513 (3) Å, b = 4.189 (1) Å, c = 27.577 Å, and β = 94.12
(2)◦ (Table S1). The unit cell contains a total of four molecules of 3 (Z = 4, Z’ = 1), occu-
pying a volume of 1557.2 (7) Å3. A close inspection of the molecular features reveals that
compound 3 is built up by two main fragments—4-methyl coumarin and 2-methyl-1,3,4-
thiadiazole—connected by a –S–CH2–CH2–S– bridge (Figure 2). The 4-methyl coumarin
and the 2-methyl-1,3,4-thiadiazole fragments are conjugated systems and are expected to be
planar with small variations in planarity owing to the presence of methyl groups attached
to C13 and C2, respectively. The calculated values for the RMSD of 4-methyl coumarin
and the 2-methyl-1,3,4-thiadiazole are 0.028 and 0.011 Å, respectively. The presence of the
–S–CH2–CH2–S– bridge between the two main fragments results in conformational flexi-
bility of compound 3, expressed in a relatively high value of the angle between the norms
of the mean planes (65.65 (11)◦) of the 4-methyl coumarin and 2-methyl-1,3,4-thiadiazole.
In addition, the twist and fold angles between the mean planes of the two fragments are
63.40 (12)◦ and 21.11 (13)◦, respectively. The molecular structure of 3 does not have any
typical donor and only one C=O acceptor (in the coumarin fragment). Therefore, no typical
hydrogen bonding is expected nor detected. Furthermore, no π . . . π stacking interactions
between the conjugated systems are present. The only possibility for the stabilization of
the crystal structure is through short contacts between S . . . O=C, C-Hmethyl . . . O, and
C-Hmethylenic . . . N, predominantly shorter than the sum of the van der Walls radii and
with distances varying between 2.69 Å and 3.314 Å (Figure 3).
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3. Materials and Methods
3.1. General

All reagents were purchased from Aldrich, Merck, and Fluka and were used with-
out any further purification. The deuterated chloroform was purchased from Deutero
GmbH. Fluka silica gel (TLC-cards 60,778 with fluorescent indicator 254 nm) was used for
TLC chromatography and Rf-values’ determination. Merck Silica gel 60 (0.040–0.063 mm)
was used for flash chromatography purification of the products. The melting point was
determined in capillary tubes on an SRS MPA100 OptiMelt (Sunnyvale, CA, USA) auto-
mated melting point system with a heating rate of 1 ◦C per min. The NMR spectra were
recorded on a Bruker Avance II+ 600 spectrometer (Rheinstetten, Germany) in CDCl3; the
chemical shifts were quoted in ppm in δ-values against tetramethylsilane (TMS) as an
internal standard and the coupling constants were calculated in Hz. The assignment of
the signals is confirmed by applying two-dimensional HSQC and HMBC techniques. The
spectra were processed with the Topspin 3.6.3 program. For simplicity, the thiadiazole
nuclei are depicted as “thd” and the ethylene bridge groups as “CH2-Scm” and “CH2-Sthd”
for methylene groups connected with the S-atom belonging to coumarin and thiadiazole,
respectively. The IR spectra were measured on a Shimadzu IR Spirit FT-IR spectrometer
(Shimadzu Corporation, Columbia, SC, USA) using QATR-S as a single-reflection ATR
measurement attachment. The mass spectra were recorded in positive mode on a Q Exac-
tive Plus Hybrid Quadrupole-Orbitrap Mass Spectrometer Thermo Scientific (ESI HR-MS).
The spectra were processed with Xcalibur Free Style program version 4.5 (Thermo Fisher
Scientific Inc., Waltham, MA, USA).

3.2. Synthesis of 2-((2-chloroethyl)thio)-5-methyl-1,3,4-thiadiazole

A solution of 2-mercapto-5-methyl-1,3,4-thiadiazole (10 mmol) and Et3N (12 mmol)
in DCE (20 mL) was stirred at RT for 48 h. The solid phase formed was filtered off and
washed with DCE. The organic solution was extracted with water, dried over MgSO4, and
evaporated to dryness. The product was purified by column chromatography on silica
gel using a mobile phase with a gradient of polarity from DCM to 1% acetone in DCM
to obtain the pure compound: 98% yield; Rf 0.67 (2% acetone in DCM); colourless liquid;
1H NMR (600 MHz, CDCl3) δ 2.741 (s, 3H, CH3), 3.648 (t, 2H, J = 7.1 Hz, CH2-S), 3.901
(t, 2H, J = 7.1 Hz, CH2-Cl) ppm; 13C NMR (150 MHz, CDCl3) δ 15.68 (CH3), 35.36 (CH2-S),
42.33 (CH2-Cl), 163.88 (Cq-2), 165.48 (Cq-5) ppm; IR (ATR) 1382, 1187, 1068, 1035, 696,
615 cm−1; HRMS (ESI+) m/z calcd. for C5H8ClN2S2

+ [M + H]+ 194.9812, found 194.9811,
∆ = −0.1 mDa.

3.3. Synthesis of 4-Methyl-7-((2-((5-methyl-1,3,4-thiadiazol-2-yl)thio)ethyl)thio)-coumarin

To a solution of 7-mercapto-4-methylcoumarin (1 mmol) in dry THF (15 mL), LiHMDS
(1.1 mmol) was slowly added in argon atmosphere and the mixture was stirred at RT for
30 min. A solution of 2-((2-chloroethyl)thio)-5-methyl-1,3,4-thiadiazole (1 mmol) in dry
THF (5 mL) was then added and the mixture was stirred at RT for 3 h. The excess of
LiHMDS was quenched with water and the mixture was extracted with DCM. The organic
layer was dried over MgSO4 and evaporated to dryness. The product was purified by
column chromatography on silica gel using a mobile phase with a gradient of polarity from
DCM to 5% acetone in DCM to obtain the pure compound: 59% yield; Rf 0.31 (2% acetone
in DCM); m. p. 157.2–157.7 ◦C; 1H NMR (600 MHz, CDCl3) δ 2.420 (d, 3H,

4J = 1.1 Hz,
CH3-4), 2.763 (s, 3H, CH3 thd), 3.499 (m, 2H, CH2-Sthd), 3.554 (m, 2H, CH2-Scm), 6.236
(d, 1H, 4J = 1.0 Hz, CH-3), 7.269 (d, 1H, CH-8, overlapped with the signal of chloroform),
7.348 (dd, 1H, 3J = 8.4 Hz, 4J = 1.7 Hz, CH-6), 7.542 (d, 1H, 3J = 8.4 Hz, CH-5) ppm; 13C
NMR (150 MHz, CDCl3) δ 15.76 (CH3 thd), 18.66 (CH3-4), 31.69 (CH2-Sthd), 32.64 (CH2-Scm),
114.24 (CH-3), 115.02 (CH-8), 117.68 (Cq-4a), 123.30 (CH-6), 125.05 (CH-5), 141.25 (Cq-7),
152.14 (Cq-4), 153.84 (Cq-8a), 160.56 (Cq-2=O), 164.23 (Cq-2 thd), 165.50 (Cq-5 thd) ppm;
IR (ATR) 1719 (νC=O), 1600 (νC=C), 1385, 960, 834, 438 cm−1; HRMS (ESI+) m/z calcd. for
C15H15N2 O2S3

+ [M + H]+ 351.0290, found 351.0287, ∆ = −0.3 mDa.



Molbank 2022, 2022, M1491 5 of 7

3.4. Crystallography

Orange-colored crystal blocks from compound 3 were obtained by slow evaporation
of acetonitrile solution at room temperature under normal pressure. A suitable crystal with
appropriate size (0.25 × 0.2 × 0.1 mm3) was mounted on a nylon loop using cryoprotective
Paratone oil. Diffraction data were collected on a Bruker D8 Venture diffractometer (Bruker
AXS GmbH, Karlsruhe, Germany) equipped with IµS micro-focus sealed X-ray source
(MoKα radiation, λ = 0.71073 Å) and a PHOTON II CPAD detector. Diffraction data were
processed in APEX4 software package [50]; peaks were integrated with Bruker SAINT
software [51] using the narrow-frame algorithm. Intensities were scaled and the data were
corrected for absorption effects using the multi-scan method (SADABS) [51]. The structure
was solved with the intrinsic phasing method and refined by the full-matrix least-squares
method on F2 (ShelxT and ShelxL program packages [52,53]) using OLEX–ver. 1.5 soft-
ware [54]. All non-hydrogen atoms were located successfully from the Fourier map and
were refined anisotropically. Hydrogen atoms were placed on calculated positions riding
on the parent carbon atoms using the following scheme: Ueq = 1.2 for C-Haromatic = 0.93 Å,
C-Hmethyl = 0.96 Å, and C-Hmethylenic = 0.97 Å. ORTEP-3v2 software [55] was used to illus-
trate the molecules of 3 in the asymmetric unit. Three-dimensional packing visualization of
the molecules of 3 was made using CCDC Mercury [56]. The most important data collec-
tion and crystallographic refinement parameters for 3 are presented in Table S1. Complete
crystallographic data for the reported structure have been deposited in the CIF format with
the Cambridge Crystallographic Data Center as 2215392. These data can be obtained free of
charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, deposited on 15 June 2022,
(or from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: +441223336033; E-mail:
depos-it@ccdc.cam.ac.uk).

4. Conclusions

4-Methyl-7-((2-((5-methyl-1,3,4-thiadiazol-2-yl)thio)ethyl)thio)-coumarin is obtained
in good yield by alkylation of 7-mercapto-4-methylcoumarin with freshly prepared
2-((2-chloroethyl)thio)-5-methyl-1,3,4-thiadiazole. The product is purified by column chro-
matography on silica gel and characterized by 1D and 2D NMR, IR, and HRMS spectra.
The single-crystal XRD reveals that the compound crystallizes in the monoclinic P21/n
space group.

Supplementary Materials: The following are available online: 1H, 13C, HSQC and HMBC NMR,
HRMS, and IR spectra. Table S1, CIF and checkcif report for the title compound.
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