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Abstract: Betulin has a broad spectrum of biological and pharmacological properties, such as anti-
cancer, antibacterial, antifungal, and antiviral. Unfortunately, the low bioavailability makes it difficult
to use in medicine. The introduction of a triazole ring to the betulin structure leads to the obtainment
of new compounds with higher activity and better bioavailability. The title compound was obtained
from the triazole derivative of betulin by conversion of the hydroxyl group to an ester moiety in
the Steglich reaction. The chemical structure of the hybrid was characterized by nuclear magnetic
resonance (1H NMR, 13C NMR, HSQC, HMBC) and HRMS spectroscopy.
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1. Introduction

Betulin, a pentacyclic triterpene of the lupane-type, has a wide range of biological and
pharmacological properties. This compound is characterized by poor water solubility, which
reduces its bioavailability. Betulin can be used as a building block for the synthesis of new
derivatives by converting the hydroxyl groups at the C3 and C28 positions or by introducing
modifications to the isopropenyl group attached to a five-membered ring (Figure 1) [1–6].
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1. Introduction 
Betulin, a pentacyclic triterpene of the lupane-type, has a wide range of biological 

and pharmacological properties. This compound is characterized by poor water solubility, 
which reduces its bioavailability. Betulin can be used as a building block for the synthesis 
of new derivatives by converting the hydroxyl groups at the C3 and C28 positions or by 
introducing modifications to the isopropenyl group attached to a five-membered ring 
(Figure 1) [1–6]. 
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Figure 1. Chemical structure of betulin. 

Betulin undergoes reactions characteristic of alcohols, such as esterification and oxi-
dation [7]. In the synthesis of betulin esters, Steglich esterification is usually used. This 
reaction takes place under mild conditions and does not require high temperatures. The 
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Figure 1. Chemical structure of betulin.

Betulin undergoes reactions characteristic of alcohols, such as esterification and oxi-
dation [7]. In the synthesis of betulin esters, Steglich esterification is usually used. This
reaction takes place under mild conditions and does not require high temperatures. The
synthesis of esters by this method is performed with N,N’-dicyclohexylcarbodiimide (DCC),
and 4-(dimethylamino)pyridine (DMAP). The addition of DMAP accelerates the reaction and
reduces the formation of by-products associated with the migration of the acyl group [8,9].
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The modification of betulin is also associated with the introduction of the triazole ring.
The triazole ring occurs in the chemical structure of compounds that exhibit anticancer, anti-
inflammatory, anti-tuberculosis, antibacterial, antifungal, antioxidant, and analgesic effects.
The possibility of introducing various substituents into the triazole ring is important for
modulating the biological properties of the triazoles and allows their wide application [10].

It is supposed that hybrid compounds can reduce side effects and overcome drug
resistance. Hybrids with several pharmacophores may also exhibit different mechanisms
of biological action. The combination of the triazole system with other anticancer phar-
macophores may lead to the formation of new derivatives of low toxicity and greater
effectiveness in the treatment of drug-resistant neoplasms [11]. For example, betulin-
triazole hybrids often possess higher biological activity than betulin. It has been shown
that triazole derivatives of betulin are cytotoxic to cells of lymphoblastic leukemia, cervi-
cal cancer, ovarian cancer, breast cancer, colon cancer, prostate cancer, lung cancer, and
melanoma [12–16]. Moreover, in the group of triazole derivatives of pentacyclic triterpenes,
there are compounds with antimicrobial, antiviral, and neuroprotective effects [17–19].

The study describes the synthesis of new triazole derivatives of betulin. The structure
of the title compound was characterized by homo- (1H and 13C NMR) and heteronuclear
(HSQC and HMBC) magnetic resonance spectroscopy and HRMS spectrometry.

2. Results and Discussion

The triazole derivative 1 was synthesized from betulin in a multi-step reaction which is
described in our earlier papers [13,16]. The treatment of compound 1 with propanoic acid in the
presence of N,N’-dicyclohexylcarbodiimide (DCC), and 4-dimethylaminopyridine (DMAP) in
dichloromethane (DCM) leads to ester 2 (Scheme 1).
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Scheme 1. Synthesis of 28-[1-(3-(propionyloxy)propyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin 2.

The crude product was purified by column chromatography. Compound 2 was
obtained with a high yield (79%). The structure of the title compound 2, which consists of
three moieties, betulin, triazole linker, and the ester group (Figure 2), was characterized by
1D (1H and 13C) and 2D (HMBC and HSQC) NMR and the HR-MS spectra.
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indicated the presence of six methyl groups at δH 0.78, 0.85, 0.99, 1.01, 1.08, and 1.72 ppm.
The chemical shift of the proton at the C3 position was observed at δH 3.21 ppm. Signals
located at δH 4.15 ppm and 4.59 ppm were assigned to the protons of the methylene group
in position C28. The singlets at δH 4.62 ppm and 4.73 ppm indicated the presence of protons
at a C29 position (Table 1, Figure 3). In the 13C NMR spectrum of the title compound, the
signal at δC 79.0 ppm was assigned to the C3 carbon atom, which is characteristic of betulin
derivatives containing a hydroxyl group in this position. The signals at δC 63.6 ppm and
110.0 ppm were assigned to carbon atoms at C28 and C29, respectively (Table 1, Figure 3).

Table 1. The selected chemical shifts (1H NMR and 13C NMR spectra) and correlations of proton–
carbon (HSQC and HMBC experiments) for derivative 2.

Proton 1H NMR δ [ppm] HSQC Carbon 13C NMR δ [ppm] HMBC

H39 1.16 H39(1.16)-C39(9.1) C39 9.1 H39(1.16)-C38(27.4)
H39(1.16)-C37(174.2)

H38 2.36 H38(2.36)-C38(27.4) C38 27.4 H38(2.36)-C39(9.1)
H38(2.36)-C37(174.2)

- - - C37 174.2
C37(174.2)-H39(1.16)
C37(174.2)-H38(2.36)
C37(174.2)-H36(4.15)

H36 4.15 H36(4.15)-C36(60.6) C36 60.6 H36(4.15)-C37(174.2)
H36(4.15)-C35(29.4)

H35 2.32 H35(2.32)-C35(29.4) C35 29.4 H35(2.32)-C34(47.7)
H35(2.32)-C36(60.6)

H34 4.54 H34(4.54)-C34(47.7) C34 47.7
H34(4.54)-C33(127.5)
H34(4.54)-C36(60.6)
H34(4.54)-C35(29.4)

H33 8.10 H33(8.10)-C33(127.5) C33 127.5 H33(8.10)-C32(140.3)
- - - C32 140.3 C32(140.3)-H33(8.10)

- - - C31 161.1 C31(161.1)-H28b(4.59)
C31(161.1)-H28a(4.15)

H29a 4.73 H29a(4.73)-C29(110.0) C29 110.0 H29a(4.73)-Cbet(47.7)
H29a(4.73)-Cbet(19.1)

H29b 4.62 H29a(4.62)-C29(110.0) C29 110.0 H29b(4.62)-Cbet(47.7)
H29b(4.62)-Cbet(19.1)

H28a 4.59 H28a(4.59)-C28(63.6) C28 63.6 H28a(4.59)-C31(161.1)
H28b 4.15 H28a(4.16)-C28(63.6) C28 63.6 H28b(4.15)-C31(161.1)

H3 3.21 H3(3.21)-C3(79.0) C3 79.0 H3(3.21)-Cbet(28.0)
H3(3.21)-Cbet(15.4)

The signals of the triazole linker and the ester moiety were assigned on the basis of
the HMBC correlation spectra (Table 1, Figure 4). The HMBC shows that the methyl group
at the C39 position correlated with C38 and C37. The carbon atoms at the C37 and C39
positions were identified based on their correlation with the proton at the C38 position.
Furthermore, the C37 carbon (δC 174.2 ppm) was correlated with the H39, H38, and H36
protons, respectively. The spectrum also showed the correlation of CH2 in position C34
with the carbon atom in position C35 (δC 29.4 ppm) and C33 (δC 127.5 ppm), respectively.
The correlation between the proton signal at C33 (δC 8.10 ppm) and the carbon signal
at C32 (δC 140.3 ppm) was also observed. The carbonyl group at the C31 position had a
correlation with the carbon atom at the C28 (δC 63.6 ppm) position (Table 1, Figure 4).

The exact mass of the [M + Na]+ ion, determined by ESI-HRMS, was found to be
674.4505 (674.4509 as calculated for C39H61N3O5Na+).
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3. Materials and Methods
3.1. General Method

All reagents were purchased from Sigma-Aldrich (Darmstadt, Germany). The
28-[1-(3-hydroxypropyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin 1 was obtained using the liter-
ature method [16]. The 1H and 13C NMR spectra were acquired on the Bruker Avance 600
spectrometer (Brucker Analytische Messtechnik GmbH, Rheinstetten, Germany) at 600 MHz
and 150 MHz, respectively, as well as the HMBC and HSQC NMR spectra. The compound
was dissolved in a deuterated chloroform (CDCl3) solvent. Chemical shifts (δ) were re-
ported in ppm and J values in Hz. Multiplicity was designated as singlet (s), doublet (d),
triplet (t), and multiplet (m). The protons of betulin, the triazole linker, and the ester moiety
were denoted by the appropriate indices as beta, linker, and ester. High-resolution mass
spectra were measured on the Bruker Impact II instrument (Brucker Analytische Messtech-
nik GmbH, Rheinstetten, Germany). Melting points were measured by the Electrothermal
IA 9300 melting point apparatus.

3.2. Synthesis of 28-[1-(3-(Propionyloxy)propyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin 2

The 28-[1-(3-hydroxypropyl)-1H-1,2,3-triazol-4-yl]carbonylbetulin 1 0.60 g (1 mmol)
and propanoic acid 84 µL (0.310 mmol, 0.08 g) were dissolved in 4 mL of dichloromethane
(DCM) and cooled to −10 ◦C. At this temperature, the mixture of 0.116 g DCC (0.605 mmol)
and DMAP 0.005 g (0.080 mmol) in the dichloromethane (1 mL) was dropped. The reaction
mixture was stirred overnight at room temperature. Then, the precipitate was filtered
off, and the filtrate was concentrated under reduced pressure. The residue was purified
by column chromatography (CHCl3:EtOH, 40:1, v/v). The desired product was a white
crystalline solid (mp. 230–232 ◦C, yield 79%, 0.516 g, 0.79 mmol).

1H NMR (600 MHz, CDCl3) δ, ppm: 0.65 (d, J = 9.36 Hz, 1H, H5bet), 0.78 (s, 3H, CH3bet),
0.85 (s, 3H, CH3bet), 0.99 (s, 3H, CH3bet), 1.01 (s, 3H, CH3bet), 1.08 (s, 3H, CH3bet), 1.16 (t,
J = 7.56 Hz, 3H, CH3ester), 1.72 (s, 3H, CH3bet), 0.90–2.09 (m, 25H, CHbet, CH2bet), 2.32 (m,
2H, CH2linker); 2.36 (m, CH2ester), 2.53 (m, 1H, H19bet), 3.21 (m, 1H, H3bet), 4.15 (m, 3H,
CH2linker, H28bet), 4.54 (t, J = 6.96 Hz, 2H, CH2linker); 4.59 (d, J = 10.8 Hz, 1H, H28bet), 4.62
(s, 1H, H29bet), 4.73 (s, 1H, H29bet), 8.10 (s, 1H, CHlinker) (Figure S1), 13C NMR (150 MHz,
CDCl3) δ, ppm: 9.1, 14.8, 15.4, 16.1, 18.3, 20.8, 24.3, 27.1, 27.4, 28.0, 29.4, 29.6, 29.8, 34.2, 34.7,
37.2, 37.7, 38.7, 38.9, 40.9, 42.8, 46.7, 47.7, 48.9, 50.4, 55.3, 60.6, 63.6, 79.0, 110.0, 127.5, 129.5,
140.3, 150.1, 161.1, 174.2 (Figure S2). ESI-HRMS m/z [M + Na]+ calcd for C39H61N3O5Na+

674.4509, found 674.4505 (Figure S3).

Supplementary Materials: The following supporting information are available online, Figure S1:
1H NMR spectrum (600 MHz, CDCl3) of 28-[1-(3-(propionyloxy)propyl)-1H-1,2,3-triazol-4-yl]
carbonylbetulin; Figure S2: 13C NMR spectrum (150 MHz, CDCl3) of 28-[1-(3-(propionyloxy)propyl)-
1H-1,2,3-triazol-4-yl]carbonylbetulin; Figure S3: ESI-HRMS spectrum of 28-[1-(3-(Propionyloxy)propyl)-
1H-1,2,3-triazol-4-yl]carbonylbetulin.
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