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Abstract: Here, we describe a magnetic resonance spectroscopy characterization of selenium cyanide
compounds, Se(CN)2, Se2(CN)2 and Se3(CN)2. Selenim-77 and carbon-13 nuclides were used to
provide data of these species at room temperature. This is the first structural characterization
performed using NMR for Se3(CN)2, while only low-temperature analyses have been conducted
so far for Se(CN)2 and Se2(CN)2. Based on these limitations, a characterization study was deemed
mandatory, especially from a synthetic chemistry point of view. In addition to these analyses, we
carried out a purity assessment for Se3(CN)2 according to the melting point parameter along with a
solubility evaluation.
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1. Introduction

Selenium cyanides are a class of inorganic compounds restricted to Se(CN)2, Se2(CN)2
and Se3(CN)2 [1–5]. Among them is triselenium dicyanide (TSD), which demonstrates
a synthetic utility in organic synthesis by allowing the electrophilic SeCN moiety to be
inserted into more complex structures (Scheme 1) [6–8], and can be used for medicinal
chemistry (Scheme 1).
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Scheme 1. Functionalization of organic compounds by Se3(CN)2 prepared in situ.

For example, Kachanov and co-workers developed in 2004 a simple method for
the introduction of the SeCN moiety in different aromatic amines containing free para-
position indoles and some active methylene as substrates, furnishing the corresponding
selenocyanates compounds in good yields [6]. More recently, Myrboh and co-workers
reported a direct and efficient one-step protocol for the selenocyanation of aryl methyl
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ketones/styryl methyl ketones by selenium dioxide and malononitrile to obtain the desired
α-carbonyl selenocyanates, where TSD was employed as a selenocyanating agent formed
in situ [8].

Although the in situ generation of TSD represents a fast and efficient pathway by
which to insert the SeCN moiety [9], to expand its use in organic synthesis, it is necessary
to access the isolated form, mainly due to the presence of unreacted SeO2 in the reaction
medium of the one-pot approach. Consequently, the thermal and moisture sensitiveness
of TSD can affect the purification step and the isolated yield and prevent mass and NMR
characterizations. In this sense, an X-ray diffraction study of TSD confirmed its trise-
lenide bridge structure, in which it was observed that the CN groups are eclipsed [10].
However, X-ray is not an experimental protocol suitable for purity assessment and/or
reaction monitoring.

TSD can be easily prepared via the exothermic reaction between malononitrile and
selenium dioxide using DMSO as a solvent [6]. However, no further characterization has
been obtained due its poor solubility in organic solvents, [10] and only X-ray crystal and
solid-state nuclear magnetic resonance (NMR) analyses have been described [4,5,10,11].
On the other hand, Se(CN)2 is stable, while Se2(CN)2 rapidly disproportionates [6,11].
Additionally, there are 77Se and 13C NMR analyses of Se(CN)2 and Se2(CN)2 species, but
they were collected at low temperatures [10,12], which hamper a selenium chemical shift
comparison for a mechanism evaluation and product identification.

In view of these limitations regarding the chemistry of selenium cyanides, and be-
cause most of the reactions with TSD have been carried out at room temperature [6–8], we
report here the characterization of Se(CN)2, Se2(CN)2 and Se3(CN)2 by 77Se and 13C NMR
spectroscopies in DMSO-d6 solvent at room temperature (25 ◦C). In order to better under-
stand the practical synthetic methodology used to access TSD from the reaction between
malononitrile and selenium dioxide, we also evaluated the solubility and purification step
by measuring the TSD melting point (MP) and collecting infrared (IR) absorption data.

2. Results

Se(CN)2 and Se2(CN)2 were prepared according to Woollins and co-workers’ method-
ology (see the Experimental Section) [10]. Se3(CN)2 (TSD) was prepared according to
Kaminskii and co-workers’ procedure (see the Experimental Section) [6]. The NMR anal-
yses were performed at 25 ◦C, immediately after their preparation, due to the instability
and/or disproportionation of selenium cyanide compounds. The samples were prepared
by dissolving 5.0 mg of the compound in 0.75 µL of the solvent. The purity of TSD was
evaluated by measuring its melting point after five distinct protocols: washing with water,
recrystallization in benzene, washing with ethanol, washing with dichloromethane and
without any treatment (see the Experimental Section). Additionally, the solubility of TSD
was evaluated in distinct deuterated solvents (CDCl3, D2O, Py-d5, benzene-d6, D3COD,
D3CCN and DMSO- d6). TSD was partially soluble in D3COD, D3CCN and DMSO-d6.
Centrifugation was necessary to remove the solid after partial solubilization in the deuter-
ated solvent. Additionally, an infrared spectrum was collected to confirm the presence of
the selenium cyanide species and compare it with the literature [10,11].

3. Discussion

The use of NMR spectroscopy to follow a reaction is an effective way to provide
evidence for a mechanism [13,14]. NMR can provide structural details about the reactions,
visualizing the consumption of starting materials and/or the formation of products, along
with kinetic information obtained from the easy quantitative NMR evaluation. Additionally,
to obtain more information regarding the reactivity of selenium species, 77Se nuclide in
NMR analysis is an important tool to for the structural elucidation of products and chemical
intermediates [14]. Based on these features, our main idea was to acquire information
on the 77Se NMR chemical shifts of selenium cyanides, especially TSD, once it could be
used to understand the reactivity of this species in the functionalization of heterocycles
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(Scheme 1) [6–8]. For this purpose, we prepared TSD, employing SeO2 (0.34 mmol) in
the reaction with malononitrile (0.17 mmol) in 750 µL of DMSO-d6 (Scheme 2) [6], and
then the 77Se{1H} NMR experiment was performed (Figure 1). It is important to mention
that the NMR sample of TSD was centrifuged to eliminate the elemental selenium residue
(Figure S1).
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Figure 1. 77Se{1H} NMR experiments of Se(CN)2 (red), Se2(CN)2. (green) and Se3(CN)2 (blue)
in DMSO-d6.

The recorded TSD 77Se{1H} NMR spectrum presented two signals, at δ = 390.7 and
261.3 ppm, which characterize the two types of selenium-77 nuclides in Se3(CN)2 (Figure 1).
In the 13C{1H} NMR spectrum, we observed a signal of carbon-13 at δ = 102.0 ppm; however,
another lower signal at δ = 104.0 ppm was also present (Figure 2). To understand the
77Se and 13C NMR profiles, Se(CN)2 and Se2(CN)2 were prepared and analyzed using
NMR spectroscopy (Scheme 2) [10]. At the beginning, we performed the 77Se{1H} NMR
experiments for these selenium cyanide compounds using DMSO-d6 as a solvent. Se(CN)2
presented a selenium-77 signal at δ = 440.6 ppm, while Se2(CN)2 demonstrated a signal
at δ = 261.1 ppm (Figure 1). As can be seen in the 77Se NMR spectra, the lower signal
frequency of Se3(CN)2 was similar to that of the Se2(CN)2 compound, while the higher
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signal frequency was not close to that observed in the selenium-77 chemical shift of the
Se(CN)2 species.
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Next, the 13C{1H} NMR spectra of Se(CN)2 and Se2(CN)2 were acquired (Figure 2).
The 13C-NMR spectrum of Se(CN)2 presented a signal at δ = 103.7 ppm, while Se2(CN)2
showed two signals, at δ = 101.97 and 104.08 ppm. According to the literature, Se2(CN)2
disproportionates to the Se(CN)2 species, which can be visualized by the presence of the
peak at δ = 104.08 ppm, due the higher stability of Se(CN)2 [10]. Considering that Se2(CN)2
has an identical selenium-77 chemical shift with Se3(CN)2 (~261 ppm, Figure 1), we assume
that the carbon-13 signal at δ = 104.48 ppm in the TSD spectrum was due to the presence
of Se(CN)2, once the chemical shifts were similar. Additionally, other possible structures
involving isoselenocyanides can be excluded, as observed by infrared (IR) spectroscopy, in
which there were no other CN bands (Figures S10–S12) [11]. TSD was isolated, and then the
solubility was checked in CDCl3, D2O, Py-d5, benzene-d6, D3COD and D3CCN deuterated
solvents. Although TSD was soluble only in D3COD and D3CCN solvents, the 77Se{1H}
NMR experiment of TSD in D3COD did not show signals, and the solution color changed
to red (Figure S2). The 77Se{1H} NMR spectrum of TSD in D3CCN demonstrated a variation
in the selenium-77 chemical shifts in both 77Se NMR signals for a higher frequency region
than in DMSO-d6 (Figure S9: δ = 452.8 and 279.4 ppm).

Although it was possible to characterize all selenium cyanides, the purity of TSD
should be evaluated before its proper use as a starting material in organic synthesis. An
alternative protocol to check the purity of the TSD compound involves its melting point
(MP), which is a practical procedure with a low cost and is properly described in the
literature (133–134 ◦C) [6]. In this sense, TSD was prepared according to Kaminskii and
co-workers’ procedure [6], and then different purification protocols were evaluated, as can
be seen in Table 1. According to the melting point study, the crude product had a distinct
MP (Table 1, entry 1), possibly due to the presence of Se(CN)2 along with the Se3(CN)2
starting material, as visualized in the 77Se{1H} NMR spectrum. When the yellow solid was
washed with ethanol, the solid became red, exactly as observed in the solubility study, and
the measured MP was 132–135 ◦C (Table 1, entry 4). The solid obtained after washing with
water and dichloromethane also presented distinct MPs (Table 1; entries 2 and 5). Only
after recrystallization with benzene did the obtained TSD present the correct MP (Table 1,
entry 3).
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Table 1. Melting points of TSD employing distinct purification protocols a.

Entry Purification Protocol Reference Melting Point (◦C)

1 — 6 134–136
2 Washed with water 7 134–136
3 Recrystallized in benzene 6 133–134
4 Washed with ethanol — 132–135
5 Washed with dichloromethane — 130–131

a The melting point experiments were performed in triplicate.

Regarding the MP measures, small variations in their values were not sufficiently
precise to assess the purity of the prepared TSD. Thus, 77Se NMR analyses were performed
as well to confirm the purity of the TSD after purification. As can be seen in the Supple-
mentary Materials (Figures S10 and S11), the 77Se NMR spectra collected after procedures
of entries 2 and 3 (Table 1) demonstrate a great amount of Se(CN)2, while the methodology
of entry 4 (Table 1) did not show signals in the spectrum. Finally, when TSD was washed
with dichloromethane, the 77Se{1H} NMR spectrum confirmed the higher purity of this se-
lenium cyanide species. Although the MP experiment can be used to evaluate the synthetic
protocol used to obtain TSD (Table 1), 77Se NMR spectroscopy is the best choice to confirm
its purity.

Once selenium cyanides were synthesized, the NMR experiments were immediately
performed due to their instability and/or disproportionation [10,11]. Moreover, the use of
TSD in situ minimizes costs and time; nonetheless, depending on the synthetic condition,
it could be necessary to isolate TSD. In this case, a careful purification should be carried
out once TSD disproportionates easily at room temperature under heating. Additionally,
the presence of impurities, such as SeO2 (Figures S10 and S11; selenium chemical shift δ
around 808 ppm), is observed in the purification protocols (Table 1, entries 2 and 3); this
accelerates the degradation process, during which the TSD solid rapidly becomes dark.
Regarding the sensitivity to light, changes in the prepared TSD were not observed when it
was exposed to light. The infrared (IR) analyses were also performed for all the selenium
cyanide species, with the following vibrations for Se3(CN)2 being observed: strong nitrile
stretching at 2130 cm−1 and a weak band at 1646 cm−1 along with a broad unassigned
band at 3442 cm−1 [10], which could be due to water and/or impurities, as observed in the
13C{1H} NMR spectrum (Figure S8). Se(CN)2 and Se2(CN)2 IR analyses corroborated the
literature [10], in which the main bands, such as CN at 2137 and 2139 cm−1, and Se-CN at
668 and 671 cm−1, respectively, could be observed with other band combinations.

4. Materials and Methods

The nuclear magnetic resonance (NMR) data were collected on a Bruker Avance III
HD spectrometer operating at 400.0 MHz for 1H, 100 MHz for 13C and 76.0 MHz for 77Se.
The concentration of all samples was approximately 5.0 mg/0.7 mL of deuterated solvent.
NMR data were recorded at 25 ◦C, with chemical shifts δ reported in parts per million
and coupling constants J in Hertz. The 77Se{1H} NMR spectra were referenced to diphenyl
diselenide (δ = 463.0 ppm) using the substitution method (IUPAC) and the 13C{1H} NMR
spectra were referenced to DMSO-d6 (δ = 39.51 ppm). All data were analyzed using MNova
7.1.1 (2012) software. The infrared analyses were performed with a Fourier Transformed
Infrared Bruker Alpha-P spectrometer in the attenuated total reflection mode, and the
samples were submitted to KI and placed on the crystal surface obtaining the IR spectra
from an average of 24 scans at the range of 4000–1500 cm−1.

All solvents and reagents (SeO2 and malononitrile) are commercially available (Sigma
Aldrich®, St. Louis, MI, USA) and were used without any previous treatment.

5. Conclusions

In conclusion, we have characterized the selenium cyanide species, Se(CN)2, Se2(CN)2
and Se3(CN)2, using NMR (at 25 ◦C) and IR spectroscopies. This is an important contribu-
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tion, as it facilitates the characterization of these starting materials, especially by 77Se NMR
spectroscopy, spreading their application in organic synthesis and assisting the elucidation
of reaction mechanisms through the identification of organoselenium products, byproducts
and chemical intermediates. Additionally, we have demonstrated the utility of the melting
point parameter to assess the purity of the triselenium dicyanide species in a simple and
low-cost procedure. The aggregation of different types of data, as well as the solubility
and stability results described here, are imperative to providing new applications for the
selenium cyanide species.

Supplementary Materials: The following are available online. Figures S1–S14: 13C and 77Se NMR
spectra, FT-IR spectrum along with the synthetic and purification procedures. Table S1: Melting
points results.
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