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Abstract: Reaction of equimolar equivalents of 1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-
yl)ethan-1-one (1) and N-phenylhydrazinecarbothioamide (2) in boiling ethanol containing a catalytic
amount of concentrated hydrochloric acid for 4 h gave (Z)-2-(1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-
triazol-4-yl)ethylidene)-N-phenylhydrazine-1-carbothioamide (3) with 88% yield. The structure of 3
was established using single-crystal X-ray diffraction and magnetic resonance spectroscopy.
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1. Introduction

Thiosemicarbazones are compelling from different perspectives, including their bond-
ing modes, biological implications, structural diversity, and ion-sensing capability [1–5].
They are effective chelating ligands for the production of metal complexes due to the
presence of flexible donor atoms (sulfur and nitrogen). The biological activities of thiosemi-
carbazones can be altered through complexation with transition metals such as the cop-
per(II) ion [6,7]. Thiosemicarbazone–metal (Cu, Ni, and Co) complexes act as antibacterial,
antifungal, antiviral, and anti-inflammatory agents [8–12]. In addition, the metal com-
plexes of thiosemicarbazones have potential for application in nonlinear optics [13,14],
electrochemical sensing [14,15], and generation of Langmuir films [16–18].

1,2,3-Triazoles present a wide range of biological activities [19–23]. The 1,2,3-triazole
ring system can be synthesized through click chemistry, which involves simple and effective
processes that can lead to the formation of a variety of substituted derivatives in high
yields [24]. The 1,3-cycloaddition of substituted nitriles containing an active methylene
moiety and aryl azides is an efficient procedure for the production of 1,2,3-triazoles [25,26].
In addition, 1,2,3-triazoles can be synthesized from reactions of diazo compounds and
amines or amides [27] and reaction of azides and amines [28] or alkynes [29–31]. The
current work covers the synthesis of a new 1,2,3-triazole derivative in continuation of our
interest in the synthesis of new heterocycles [32–35].

2. Results and Discussion
2.1. Synthesis of 3

Reaction of equimolar equivalents of 1-(5-methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-
yl)ethan-1-one (1) and N-phenylhydrazinecarbothioamide (2) in boiling ethanol containing
a catalytic amount of concentrated hydrochloric acid (HCl) for 4 h gave (Z)-2-(1-(5-methyl-1-
(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethylidene)-N-phenylhydrazine-1-carbothioamide (3)
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in 88% yield (Scheme 1). The structure of 3 was determined using single-crystal X-ray
diffraction (Section 2.3) and nuclear magnetic resonance (NMR) spectroscopy (Section 2.2).
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Scheme 1. Synthesis of 3.

2.2. NMR Spectroscopic Analysis

The 1H NMR spectrum of 3 showed two exchangeable singlets, appearing at 9.71
and 10.92 ppm, due to the two NH protons. In addition, the two singlets that appeared
at 2.54 and 2.64 ppm were attributed to the protons of the two methyl groups. The 13C
NMR spectrum of 3 showed the presence of a singlet at 177.0 ppm due to the thiocarbonyl
carbon. Also observed are two singlets at 11.6 and 15.5 ppm due to the carbon atoms of the
two methyl groups (see the Supplementary Material for details). It should be noted that
the 1H NMR spectrum of crude 3 contains a few signals with very low intensities that are
possibly due to the presence of 2. Following crystallization, the purity of 3 was confirmed
by microanalytical analysis (Section 3.2).

2.3. X-ray Crystal Structure Description

The asymmetric unit of the crystal structure comprises three molecules (M1, M2, and
M3) and is shown in Figure 1. Each molecule is composed of four groups (A–D): aryl (M1A:
C1–C6), (M2A: C19–C24), (M3A: C37–C42); ethylidenehydrazine-carbothioamide (M1B:C7–
C9, N1–N3, S1), (M2B:C25-C27, N8-N10, S2), (M3B:C43-C45, N15-N17, S3); methyltriazole
(M1C: C10–C12, N4–N6), (M2C: C28–C30, N11–N13), (M3C: C46–C48, N18–N20); and
nitrobenzene (M1D: C13–C18, N7, O1, O2), (M2D: C31–C36, N14, O3, O4), (M3D: C49–C54,
N21, O5, O6).

In each of the three unique molecules, group B is planar with a maximum deviation
from the least squares plane of no more than 0.031(2) Å. Intramolecular N–H . . . N hydrogen
bonding contributes to the stabilization of these groups in the planar orientation (Table 1).

Table 1. Intramolecular hydrogen bond geometry of 3.

Molecule Distance (Å) Angle (◦)

M1
N1 . . . N3 2.542(2) N1-H1 . . . N3 112.3
N2 . . . N4 2.707(2) N2-H2A . . . N4 132.5

M2
N8 . . . N10 2.546(2) N8-H8 . . . N10 113.0
N9 . . . N11 2.673(2) N9-H9 . . . N11 133.2

M3
N15 . . . N17 2.551(2 N15-H15A . . . N17 114.2
N16 . . . N18 2.685(2) N16-H16 . . . N18 133.4

Groups B and C are coplanar in each of the three molecules with twist angles of
4.07(8)◦, 2.71(8)◦, 4.60(9)◦ for molecules M1, M2, and M3, respectively. Twist angles A/B
are 41.52(5)◦, 39.23(5)◦, and 24.70(65)◦ for molecules M1, M2, and M3, respectively, and
the corresponding respective C/D twists are 45.74(42)◦, 46.40(4)◦, 37.67(5)◦. It is notable
that in both the cases of A/B and C/D twist angles, the values for molecule M3 deviate
significantly from the values for M1 and M2.
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Figure 1. An ortep representation of the three unique molecules in the crystal structure of 3 showing
50% probability atomic displacement ellipsoids.

In the crystal structure, the molecules are stacked to form columns parallel to the a
axis, with the long axis of the molecules aligned roughly in line with the b axis (Figure 2).
Two types of columns are observed. In one type of column, molecules M1 and M2 alternate,
whereas the other type of column consists of only molecules of type M3.
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3. Materials and Methods
3.1. General

A Shimadzu IR Affinity-1 Spectrometer was used to record the IR spectrum of 3. A
JEOLNMR spectrometer was used to record the 1H (500 MHz) and 13C NMR (125 MHz)
spectra in deuterated dimethyl sulfoxide (DMSO-d6). The chemical shift (δ) was recorded
in ppm and the coupling constant (J) was measured in Hz. Compound 2 was prepared
based on a literature procedure [36].

3.2. Synthesis of 3

A mixture of 1 (0.49 g, 2 mmol) and 2 (0.33 g, 2 mmol) in dry EtOH (20 mL) and
concentrated HCl (0.2 mL) was refluxed for 4 h. The yellow solid obtained was filtered,
washed with EtOH (2 × 15 mL), and recrystallized from DMF to give yellow crystals of 3
(88%), mp. 236–237 ◦C. IR: 3271, 3204, 1612, 1600, 1472, 1440 cm–1. 1H NMR: 2.54 (s, 3H,
Me), 2.64 (s, 3H, Me), 7.14 (t, J = 7.6 Hz, 1H, H4 of Ph), 7.32 (t, J = 7.6 Hz, 2H, H3/H5 of Ph),
7.68 (d, J = 7.6 Hz, 2H, H2/H6 of Ph), 7.91 (d, J = 8.6 Hz, 2H, Ar), 8.44 (d, J = 8.6 Hz, 2H,
Ar), 9.71 (s, exch., 1H, NH), 10.92 (s, exch., 1H, NH). 13C NMR: 11.6 (Me), 15.5 (Me), 124.3
(C2/C6 of Ph), 125.5 (C3/C5 of Ar), 125.7 (C4 of Ph), 126.7 (C2/C6 of Ar), 128.8 (C3/C5 of
Ph), 134.0 (C4 of triazolyl), 139.4 (C1 of Ph), 140.8 (C5 of triazolyl), 143.3 (C1 of Ar), 145.4
(C=N), 148.3 (C4 of Ar), 177.0 (C=S). Anal. Calcd. for C18H17N7O2S (395.44): C, 54.67; H,
4.33; N, 24.79%. Found: C, 54.77; H, 4.28; N, 24.88%.
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3.3. Data Collection and Structure Refinement Details

An Agilent SuperNova Dual Atlas diffractometer using mirror monochromated MoKα

radiation was used to collect single-crystal diffraction data. The structure of 3 was solved
by direct methods using SHELXT [37] and refined by full-matrix least-squares methods
on F2 with SHELXL-2014 [38]. C18H17N7O2S: FW = 395.45; T = 296(2) K; λ = 0.71073 Å;
triclinic, PĪ; a = 7.7173(3) Å; b = 17.6318(6) Å; c =20.8501(9) Å; α = 89.689(3)◦; β = 80.918(4)◦;
γ = 87.656(3)◦; V = 2799.16(19) Å3; Z = 6; calculated density = 1.408 Mg/m3; absorption
coefficient = 0.204 mm–1; F(000) = 1236; crystal size = 0.390× 0.330× 0.070 mm3; reflections
collected = 26,301; independent reflections = 13,464; R(int) = 0.0280; parameters = 764;
goodness-of-fit on F2 = 1.023; R1 = 0.0504 and wR2 = 0.1142 for (I > 2sigma(I)); R1 = 0.0935
and wR2 = 0.1415 for all data; largest difference peak and hole = 0.218 and−0.220 e.Å–3. The
X-ray crystallographic data for 3 have been deposited in the Cambridge Crystallographic
Data Center with CCDC reference number 2207521.

4. Conclusions

(Z)-2-(1-(5-Methyl-1-(4-nitrophenyl)-1H-1,2,3-triazol-4-yl)ethylidene)-N-phenylhydra-
zine-1-carbothioamide was synthesized in high yield and its structure was established
using single-crystal X-ray diffraction and nuclear magnetic resonance.

Supplementary Materials: IR, 1H, and 13C NMR spectra, CIF, and checkcif reports for the title
compound.
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