
Citation: Kiseleva, M.A.; Tatarin, S.V.;

Churakov, A.V.; Bezzubov, S.I.

Methyl-3-(3-hydroxy-3-(4-(piperidin-

1-yl)phenyl)-prop-2-enoyl)benzoate.

Molbank 2022, 2022, M1449. https://

doi.org/10.3390/M1449

Academic Editor: Kristof Van Hecke

Received: 5 September 2022

Accepted: 14 September 2022

Published: 20 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

molbank

Short Note

Methyl-3-(3-hydroxy-3-(4-(piperidin-1-yl)phenyl)-prop-2-
enoyl)benzoate
Marina A. Kiseleva 1,2 , Sergei V. Tatarin 1 , Andrei V. Churakov 1,* and Stanislav I. Bezzubov 1,*

1 N.S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninskii pr.
31, 119991 Moscow, Russia

2 Department of Chemistry, Lomonosov Moscow State University, Lenin’s Hills 1, 119991 Moscow, Russia
* Correspondence: churakov@igic.ras.ru (A.V.C.); bezzubov@igic.ras.ru (S.I.B.)

Abstract: The title compound was synthesized and characterized for the first time by 1H, 13C NMR,
high-resolution mass spectra and single-crystal X-ray diffraction.

Keywords: 1,3-diketone; X-ray crystallography; hydrogen bond

1. Introduction

The growing interest in the design and synthesis of 1,3-diketones is, in particular,
due to the great potential of these ligands as versatile building blocks for the construc-
tion of highly emissive metal complexes for application in organic light-emitting diodes
(OLEDs) [1–11]. Aromatic β-diketones are also considered to be promising ligands for the
creation of strong light-absorbing metal complexes for dye-sensitized solar cells [12–15].
This application requires the specific structure of diketones which should contain at least
one carboxy- (or ester) group and electron-donating fragment(s) to give the resulting metal
complexes robust light-harvesting characteristics. Such β-diketones are evidently asym-
metric and, hence, they can be scarcely obtained via the common Claisen condensation. In
this work, we synthesized an asymmetric aromatic 1,3-diketone (Figure 1) bearing the car-
boxymethyl group and the piperidine moiety under mild conditions and characterized the
prepared ligand by a 1H, 13C {1H} NMR, high-resolution mass spectra, UV-vis spectroscopy
and single-crystal X-ray diffraction.
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The title diketone was synthesized via the reaction of a benzotriazole amide of 

isophthalic acid monomethyl ester acting as the mild acylation agent with 1-(4-(piperidin-
1-yl)phenyl)ethanone (Scheme 1). The low yield of the product (10%) is likely a result of 
the side formation of a symmetrical 1,3-di-(3-carboxymethylphenyl)-propane-1,3-dione 
(see the 1H NMR spectrum of the crude product in Supplementary Materials Figures S3–
S5 and chemical structure of the side product) by a previously described intermolecular 
benzotriazole-mediated acylation/deacetylation process [16]. 
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Figure 1. Chemical structure of the title compound.

2. Results and Discussion

The title diketone was synthesized via the reaction of a benzotriazole amide of isoph-
thalic acid monomethyl ester acting as the mild acylation agent with 1-(4-(piperidin-1-
yl)phenyl)ethanone (Scheme 1). The low yield of the product (10%) is likely a result of the
side formation of a symmetrical 1,3-di-(3-carboxymethylphenyl)-propane-1,3-dione (see
the 1H NMR spectrum of the crude product in Supplementary Materials Figures S3–S5
and chemical structure of the side product) by a previously described intermolecular
benzotriazole-mediated acylation/deacetylation process [16].
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Scheme 1. Preparation of methyl-3-(3-hydroxy-3-(4-(piperidin-1-yl)phenyl)-prop-2-enoyl)benzoate. 

The composition and structure of the β-diketone were identified by various 
spectroscopic techniques. The 1H NMR spectrum (Figure S1, Supplementary Materials) 
shows a characteristic singlet of the OCH3 group at 3.98 ppm while two multiples at 1.69 
and 3.40 ppm with the relative intensities 6 and 4, respectively, arise from the protons of 
the piperidine ring; the aromatic protons appear at 6.91–8.60 ppm. The 13C NMR spectrum 
consists of 18 individual signals consistent with the number of unique carbon atoms in the 
title compound (Figure S2). In the high-resolution mass spectrum, the dominant 
molecular ion peak corresponds to the [M + H]+ ion. 

The obtained diketone exists in enol form in the solution, as evidenced by its 1H NMR 
spectrum containing two characteristic singlets at 6.82 and 17.15 ppm corresponding to 
the α-methine proton and hydroxy-group of the enol, respectively. Single-crystal X-ray 
diffraction analysis revealed that the title compound exists in enol form in the solid state 
too. 

The molecular structure of the enol is depicted in Figure 2. The conformation is non-
planar with interplanar angles between the substituted phenyl rings and the keto-enol 
plane ranging from 3.77(4)° to 21.31(4)°. The C9–O2 bond (1.2720(13) Å) is significantly 
shorter than the C11–O1 bond (1.3190(13) Å); that is in good agreement with the data from 
the Cambridge Structural Database (Version 5.43, March 2022, Cambridge, UK). Though 
there are a fairly large number of reports on crystal structures of symmetrical and 
asymmetrical β-diketones (more than 450 structures), analysis of the database shows that 
the vast majority of these compounds crystallizes in enol form and only 15 are pure 
diketones. 

 
Figure 2. Molecular structure of the title enol. Displacement ellipsoids are shown at 50% probability 
level. 

According to the database, in the structures of enols the intramolecular resonance-
assisted hydrogen bonds impart short O⋯O distances (2.39–2.55 Å) [17]. The hydrogen 
atom shared between these oxygen atoms can be ordered, disordered by symmetry, as in 
dibenzoylmethane [18] and many other symmetrical β-diketones [19], or disordered with 
unequal occupancies (the most asymmetrical enols). In the case of the title compound, the 
H2 atom located from the difference Fourier map is closer to the O1 atom with the O1–H2 

Scheme 1. Preparation of methyl-3-(3-hydroxy-3-(4-(piperidin-1-yl)phenyl) prop-2-enoyl)benzoate.

The composition and structure of the β-diketone were identified by various spectro-
scopic techniques. The 1H NMR spectrum (Figure S1, Supplementary Materials) shows
a characteristic singlet of the OCH3 group at 3.98 ppm while two multiples at 1.69 and
3.40 ppm with the relative intensities 6 and 4, respectively, arise from the protons of the
piperidine ring; the aromatic protons appear at 6.91–8.60 ppm. The 13C NMR spectrum
consists of 18 individual signals consistent with the number of unique carbon atoms in the
title compound (Figure S2). In the high-resolution mass spectrum, the dominant molecular
ion peak corresponds to the [M + H]+ ion.

The obtained diketone exists in enol form in the solution, as evidenced by its 1H NMR
spectrum containing two characteristic singlets at 6.82 and 17.15 ppm corresponding to
the α-methine proton and hydroxy-group of the enol, respectively. Single-crystal X-ray
diffraction analysis revealed that the title compound exists in enol form in the solid state
too.

The molecular structure of the enol is depicted in Figure 2. The conformation is non-
planar with interplanar angles between the substituted phenyl rings and the keto-enol plane
ranging from 3.77(4)◦ to 21.31(4)◦. The C9–O2 bond (1.2720(13) Å) is significantly shorter
than the C11–O1 bond (1.3190(13) Å); that is in good agreement with the data from the
Cambridge Structural Database (Version 5.43, March 2022, Cambridge, UK). Though there
are a fairly large number of reports on crystal structures of symmetrical and asymmetrical
β-diketones (more than 450 structures), analysis of the database shows that the vast majority
of these compounds crystallizes in enol form and only 15 are pure diketones.
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Figure 2. Molecular structure of the title enol. Displacement ellipsoids are shown at 50% probability
level.

According to the database, in the structures of enols the intramolecular resonance-
assisted hydrogen bonds impart short O· · ·O distances (2.39–2.55 Å) [17]. The hydrogen
atom shared between these oxygen atoms can be ordered, disordered by symmetry, as in
dibenzoylmethane [18] and many other symmetrical β-diketones [19], or disordered with
unequal occupancies (the most asymmetrical enols). In the case of the title compound,
the H2 atom located from the difference Fourier map is closer to the O1 atom with the
O1–H2 bond length of 1.07(2) Å, which lies within the expected range 0.76(4)–1.26(7) Å,
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according to the CSD (273 structures). Although the corresponding C–O–H angle is as
small as 103(3)◦, it falls within the range from 94 to 112◦, which is common for this type of
intramolecular hydrogen bonds. In the crystal, enol molecules are assembled by weak van
der Waals interactions (Figure S7).

3. Materials and Methods
3.1. General Comment

All commercially available reagents were at least reagent grade and used without
further purification. Solvents were distilled and dried according to standard procedures.
Benzotriazole amide of isophthalic acid monomethyl ester was previously prepared by the
method described in the work [20].

1H and 13C NMR spectra were acquired at 25 ◦C on a Bruker Avance 400 instrument
(Billerica, MA, USA) and chemical shifts were reported in ppm referenced to residual
solvent signals. High resolution and accurate mass measurements were carried out using
a Brukermicro-TOF-QTM spectrometer (Billerica, MA, USA). The electronic absorption
spectrum was measured on an OKB Spectr SF-2000 spectrophotometer (Saint Petersburg,
Russia).

3.2. Synthesis

A suspension of MgBr2·Et2O (0.96 g, 3.7 mmol) in dry CH2Cl2 (30 mL) benzotriazole
amide (0.5 g, 1.8 mmol) was added and the mixture was sonicated for a minute. 1-(4-
(piperidin-1-yl)phenyl)ethenone (0.3 g, 1.48 mmol) was added to the mixture and it was
sonicated for a minute. N,N-Diisopropylethylamine (0.775 mL, 4.5 mmol) was added to
the resulting suspension and the mixture was stirred at room temperature for 20 h. The
reaction mixture was treated by 2 M HCl (30 mL) and vigorously stirred for 0.5 h. The
organic layer was separated and the aqueous layer was extracted by CH2Cl2 (3 × 20 mL).
The combined organic extracts were filtrated through paper followed by the evaporation
of the solvent. The resulting oil was crystallized from CH3OH to give a yellow–brown
powder, which was dried in vacuo and purified by column chromatography (SiO2, ethyl
acetate/hexane 1:10 → 1:3 vol.). The powder containing ~70% of the symmetrical side
product was dissolved in dichloromethane for preparative TLC (SiO2, ethyl acetate/hexane
1:5 vol.). The resulting solid containing ~30% of the side product was purified by column
chromatography (SiO2, ethyl acetate/hexane 5:1 vol.). Yield 0.054 g (10%).

1H NMR (400 MHz, CDCl3, δ): 1.69 (m, 6H, l + m + n), 3.40 (m, 4H, k + o), 3.98 (s,
3H, CH3), 6.82 (s, 1H, e), 6.91(d, J = 3.8 Hz, 2H, g + j), 7.57 (t, J = 7.8 Hz, 1H, c), 7.93 (d,
J = 4.5 Hz, 2H, h + i), 8.16–8.20 (m, 2H, b + d), 8.60 (s, 1H, a), 17.15 (s, 1H, f).

13C{1H} NMR (101 MHz, CDCl3, δ): 24.0 (m), 25.0 (l), 48.2 (k), 52.0 (OCH3), 91.7 (e),
113.1 (arom.), 123.3 (arom.), 127.5 (arom.), 128.4 (arom.), 129.0 (arom.), 130.1 (arom.), 130.8
(arom.), 132.13 (arom.), 135.9 (arom.), 154.0 (arom.), 166.2 (COOCH3), 181.0 (Cdiketonate),
186.3 (Cdiketonate).

HRMS (ESI) m/z: [M + H]+ calcd for C22H23NO4 366.1705, found 366.1706.
UV-Vis (CH2Cl2): λmax 326 nm (ε = 9900 M−1 cm−1), 338.8 nm (ε = 10,300 M−1 cm−1),

404.4 nm (ε = 6400 M−1 cm−1).

3.3. Crystallography Details

Single crystals of the target enol were obtained by recrystallization from ethyl ac-
etate/hexane mixture. Crystallographic data were collected on a Bruker D8 Venture diffrac-
tometer (at T = 100 K) using graphite monochromatized Mo–Kα radiation (λ = 0.71073 Å)
using ω-scan mode. Absorption correction based on the measurements of equivalent
reflections was applied [21]. The structure was solved by direct methods and refined by
full matrix least-squares on F2 with anisotropic thermal parameters for all non-hydrogen
atoms [22,23]. All hydrogen atoms were found from the difference Fourier map and refined
freely. The crystallographic details are presented in Table S1 and the crystal packing is
plotted in Figure S7. CCDC 2204554 contains the supplementary crystallographic data.
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These data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via www.ccdc.cam.ac.uk/data_request/cif.

Crystal Data for C22H23NO4 (M = 365.41 g/mol): monoclinic, space group P21/c
(no. 14), a = 11.7425(6) Å, b = 11.3120(7) Å, c = 13.9594(8) Å, β = 106.159(2)◦, V = 1780.99(18)
Å3, Z = 4, T = 100 K, µ(MoKα) = 0.094 mm−1, Dcalc = 1.363 g/cm3, 34187 reflections
measured (2.36◦ ≤ 2Θ ≤ 28.27◦), 4403 unique (Rint = 0.0396, Rsigma = 0.0239) which were
used in all calculations. The final R1 was 0.0379 (I > 2σ(I)) and wR2 was 0.1069 (all data).

Supplementary Materials: The following are available online. Part 1. NMR spectroscopy and high-
resolution mass-spectrometry data: Figures S1–S6; Part 2. X-ray crystallography: Table S1, Figure S7;
Part 3. Optical data: Figure S8.
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