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Abstract: Donor-acceptor-donor (D-A-D) type molecules are of interest as components in organic
light emitting diodes (OLEDs). In this communication, 4,7-bis(2,3,3a,8b-tetrahydrocyclopenta[b]indol-
4(1H)-yl)-[1,2,5]thiadiazolo[3,4-c]pyridine was obtained by two successive reactions—aromatic nucle-
ophilic substitution SNAr and Buchwald-Hartwig cross-coupling reaction. The structure of newly
synthesized compounds was established by elemental analysis, high resolution mass-spectrometry,
1H, 13C NMR, IR and UV spectroscopy and mass-spectrometry. The luminescent properties of the
title compound were studied.

Keywords: donor-acceptor-donor molecules; [1,2,5]thiadiazolo[3,4-c]pyridines; aromatic nucleophilic
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1. Introduction

In recent decades, there has been a great attention to the design of small organic
molecules containing donor (D) and acceptor (A) fragments due to their possible applica-
tion in various electronic devices, such as organic solar cells (OSCs) [1,2], n-type organic
field effect transistors (OFETs) [3,4] and luminescent materials emitting in the visible and
infrared regions [5,6]. Special attention in the construction of OLEDs is given to struc-
tures of the donor-acceptor-donor (D-A-D) type [7]. Recently various building blocks
based on a fused 1,2,5-thiadiazole ring, such as benzo[d][1,2,3]thiadiazole [8], benzo[1,2-
d:4,5-d′]bis([1,2,3]thiadiazole [9] and [1,2,5]thiadiazolo[3,4-d]pyridazine as an electron
acceptors with ultrahigh electron deficiency have been used for the preparation of D-
A-D luminophores [7], and low-bandgap conjugated polymers [4] have been reported.
However, according to SciFinder and Reaxys searches there are more than 200 D-A-D
[1,2,5]thiadiazolo[3,4-c]pyridines, there are no examples of when donor fragments were
attached to thiadiazolopyridine ring by nitrogen. To obtain such compounds we combined
two synthetic procedures: aromatic nucleophilic substitution SNAr and Buchwald-Hartwig
cross-coupling reaction, as it was employed for the synthesis of 4,7-bis(dodecylthio)-
[1,2,5]thiadiazolo[3,4-c]pyridine from 4,7-dibromo-[1,2,5]thiadiazolo[3,4-c]pyridine [10].
Herein, we report the preparation of 4,7-bis(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-
yl)-[1,2,5]thiadiazolo[3,4-c]pyridine 1 from 4,7-dibromo-[1,2,5]thiadiazolo[3,4-c]pyridine 2
and the investigation of its luminescent properties.

2. Results and Discussion

4,7-Dibromo-[1,2,5]thiadiazolo[3,4-c]pyridine 2 was investigated in the reaction of nu-
cleophilic aromatic substitution of SNAr with 1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole 3.
It was shown that when dibromide was treated with 2 equiv of amine 3 at room temperature
in CH2Cl2 or MeCN, the formation of monoamino derivative 4 was observed. The reaction
in acetonitrile proceeded much more smoothly than in the less polar dichloromethane.
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We have shown that by the refluxing of amine 3 with dibromide 2 in acetonitrile, an in-
crease in the yield of monosubstituted derivative 4 up to 80% was observed (the yield
of compound 4 in dichloromethane under similar conditions was 62%). To prepare the
target bis(amino) derivative 1 we studied the Buchwald-Hartwig cross-coupling reac-
tion of monoamine 4 with cyclopentaindole 3 in the presence of the palladium catalyst,
tris(dibenzylideneacetone) dipalladium (0) (Pd2(dba)3), an XPhos ligand and t-BuOK as
a base [11]. It was found that when the reaction mixture was refluxed in toluene for 48 h,
complete disappearance of the starting compound 4 was observed with the formation of a
bis-substituted product 1 with a high yield of 65% (Scheme 1). We have shown that the reac-
tion of dibromide 2 with amine 3 (3 equiv) under the conditions of the Buchwald-Hartwig
reaction led to complete decomposition of the starting product; it was not possible to isolate
individual products from the reaction mixture.
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The structure of 7-bromo-4-(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-yl)-[1,2,5]
thiadiazolo[3,4-c]pyridine 4 and 4,7-bis(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-yl)-
[1,2,5]thiadiazolo[3,4-c]pyridine 1 was confirmed by elemental analysis, high resolution
mass-spectrometry, 1H, 13C NMR, IR and UV spectroscopy.

We measured the optical absorption spectra for compound 1 in THF, and compared it
with the spectra of pyridazinothiadiazole-analogue 5 [7]. The spectra consisted of several
spectral bands in the UV wavelength range and one wide band in the visible spectral region,
which is explained by the process of intramolecular charge transfer (ICT). The spectra
obtained for 1 and 5 in the UV region have an absorption maximum at a wavelength of
270 and 290 nm, respectively. The position of this short-wave maximum indicates that this
band is associated with a π-π* electronic transition. For compound 1, the maximum of the
ICT bands is located in the shorter wavelength spectral region of 509 nm compared to the
pyridazinothiadiazole analogue 5 (555 nm) [7]. However, compound 1 had an extremely
low fluorescence intensity in the near-IR region of the spectrum (740 nm) compared to
analogue 5, probably due to the presence of non-radiative conversion in compound 1.

In conclusion, 4,7-bis(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-yl)-[1,2,5]thiadiazolo
[3,4-c]pyridine 1 was successfully synthesized from 4,7-dibromo-[1,2,5]thiadiazolo[3,4-
c]pyridine 2 by two synthetic procedures: aromatic nucleophilic substitution SNAr and
Buchwald-Hartwig cross-coupling reaction. The luminescent properties of bis(cyclopentaindole)
derivative 1 were investigated.

3. Materials and Methods

4,7-Dibromo-[1,2,5]thiadiazolo[3,4-c]pyridine 2 [12] and 1,2,3,3a,4,8b-hexahydrocyclo-
penta[b]indole 3 [13] were prepared according to the published methods. The solvents
and reagents were purchased from commercial sources and used as received. Elemental
analysis was performed on a 2400 Elemental Analyzer (Perkin ElmerInc., Waltham, MA,
USA). Melting points were determined on a Kofler hot-stage apparatus and are uncorrected.
1H and 13C NMR spectra were taken with a Bruker AM-300 machine (Bruker AXS Handheld
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Inc., Kennewick, WA, USA) (at frequencies of 300 and 75 MHz) in CDCl3 solution, with
TMS as the standard. J values are given in Hz. MS spectrum (EI, 70 eV) was obtained with
a Finnigan MAT INCOS 50 instrument (Hazlet, NJ, USA). IR spectrum was measured with
a Bruker “Alpha-T” instrument in KBr pellet. High-resolution MS spectrum was measured
on a Bruker micrOTOF II instrument (Bruker Daltonik Gmbh, Bremen, Germany) using
electrospray ionization (ESI). Solution UV-visible absorption spectra were recorded using
an Agilent cary 60 spectrophotometer (USA). Luminescence spectra were recorded using an
Agilent Cary Eclipse (USA). Sample was placed in a 1 cm quartz cell at room temperature
with a 5 × 10−5 mol/mL concentration.

Synthesis of 7-bromo-4-(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-yl)-[1,2,5]thiadia
zolo[3,4-c]pyridine 4 (Supplementary Materials).

1,2,3,3a,4,8b-Hexahydrocyclopenta[b]indole 3 (108 mg, 0.68 mmol) and 4,7-dibromo-
[1,2,5]thiadiazolo[3,4-c]pyridine 2 (100 mg, 0.34 mmol) were dissolved in a vial with MeCN
(10 mL) under a stream of nitrogen. The mixture was stirred for 12 h at 81 ◦C. On completion
(monitored by TLC), the mixture was poured into water (20 mL) and extracted with CH2Cl2
(3 × 35 mL). The combined organic extracts were washed with brine, dried over MgSO4,
filtered, and concentrated under reduced pressure. The crude product was purified by
column chromatography on silica gel (Silica gel Merck 60, eluent hexane–CH2Cl2, 5:1,
v/v). Yield 101 mg (80%), red solid, mp = 150–152 ◦C, Rf = 0.2 (Hexane:CH2Cl2, 5:1, v/v).
IR spectrum, ν (cm−1): 2924, 2862, 1518, 1482, 1457, 1394, 1298, 1263, 890, 749. 1H NMR
(ppm): δ 8.68 (d, J = 8.0, 1H), 8.31 (s, 1H), 7.30–7.24 (m, 2H), 7.10 (t, J = 7.1, 1H), 6.02 (t,
J = 7.2, 1H), 4.04 (t, J = 7.1, 1H), 2.30–2.08 (m, 3H), 1.82–1.65 (m, 2H), 1.48–1.37 (m, 1H). 13C
NMR (ppm): δ 147.6, 145.5, 144.3, 143.9, 136.2, 127.4, 124.1, 123.9, 123.8, 117.8, 98.5, 67.6,
45.8, 36.9, 34.2, 23.9. MS (EI, 70eV), m/z (I, %): 375 ([M + 1]+, 3), 374 ([M]+, 8), 373 ([M − 1]+,
2), 372 ([M − 2]+, 6), 345 (8), 293 (11), 143 (18), 130 (100), 115 (17), 93 (80), 77 (25), 57 (20), 41
(20), 28 (10). HRMS (ESI-TOF), m/z: calcd for C16H14

79BrN4S [M + H]+, 373.0117, found,
373.0112. Anal. calcd. for C16H13BrN4S (373.0117): C, 51.48; H, 3.51; N, 15.01. Found: C,
51.40; H, 3.52; N, 15.0%.

Synthesis of 4,7-bis(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-yl)-[1,2,5]thiadiazolo
[3,4-c]pyridine 1 (Supplementary Materials).

7-Bromo-4-(2,3,3a,8b-tetrahydrocyclopenta[b]indol-4(1H)-yl)-[1,2,5]thiadiazolo[3,4-c]
pyridine 4 (100 mg, 0.26 mmol), Pd2(dba)3 (23 mg, 0.026 mmol), XPhos (24 mg, 0.052 mmol)
and t-BuOK (32 mg, 0.28 mmol) were dissolved in a vial with toluene (10 mL) under a
stream of nitrogen. After 10 min, 1,2,3,3a,4,8b-hexahydrocyclopenta[b]indole 3 (54 mg,
0.26 mmol) was added using a syringe. The temperature of the oil bath was increased
to 120 ◦C, and stirring was continued for 48 h. This reaction was stopped by pouring it
into ice water. Then, the solution was extracted with CH2Cl2 (3 × 35 mL). The combined
organic extracts were washed with brine, dried over MgSO4, filtered, and concentrated
under reduced pressure. The crude product was purified by column chromatography on
silica gel (Silica gel Merck 60, eluent hexane–CH2Cl2, 5:1, v/v). Yield 76 mg (65%), violet
solid, mp = 130–132 ◦C, Rf = 0.3 (CH2Cl2, 5:1, v/v). IR spectrum, ν (cm−1): 2925, 2854, 1603,
1486, 1456, 1260, 1099, 1023, 802, 736, 529. 1H NMR (ppm): δ 8.66 (dd, J = 8.4, 3.4, 1H), 8.23
(s, 1H), 7.26–7.20 (m, 2H), 7.11 (d, J = 7.3, 1H), 7.02 (t, J = 7.4, 1H), 6.93 (t, J = 7.2, 1H), 6.66 (t,
J = 7.3, 1H), 6.39 (t, J = 8.2, 1H), 6.06 (t, J = 7.3, 1H), 5.18–5.011 (m, 1H), 4.01 (t, J = 8.2, 1H),
3.96–3.90 (m, 1H), 2.29–1.99 (m, 4H), 1.92–1.78 (m, 6H), 1.45–1.35 (m, 2H). 13C NMR (ppm):
δ 150.1, 146.3, 145.1, 144.9, 141.1, 136.0, 133.9, 129.9, 127.4, 127.2, 124.7, 124.1, 123.2, 122.5,
118.1, 117.0, 107.1, 69.4, 67.5, 46.1, 45.8, 37.0, 35.5, 34.4, 33.7, 24.3, 23.9. MS (EI, 70eV), m/z (I,
%): 453 ([M + 2]+, 6), 452 ([M + 1]+, 30), 451 ([M]+, 100), 422 (12), 265 (8), 197 (35), 130 (70),
115 (32), 77 (25), 41 (33). HRMS (ESI-TOF), m/z: calcd for C27H26N5S [M + H]+, 452.1903,
found, 452.1922. Anal. calcd. for C27H25N5S (452.1903): C, 71.81; H, 5.58; N, 15.51. Found:
C, 71.79; H, 5.55; N, 15.47%. UV-Vis spectra (in THF), λmax: 271 nm (ε = 14757 M−1 cm−1),
509 nm (ε = 4646 M−1 cm−1). Luminescence spectra: in THF λmax: 740 nm.
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Supplementary Materials: The following are available online: copies of 1H, 13C NMR, IR, UV-Vis,
luminescence, and mass-spectra for compounds 1 and 4.
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