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Abstract: The title compound, N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-
10(2H)-yl)ethylidene)succinohydrazide (1), was obtained by the reaction of formylmethylflavin and
succinic acid dihydrazide. The product 1 was characterized by 1H-NMR, 13C-NMR, HRMS and UV.
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1. Introduction

Flavins, chemical compounds containing an isoalloxazine ring in their molecule,
are part of the complex redox centers of proton pumps and act as photoreceptors in
phototropism [1]. Flavins are a large group of compounds involved in biological processes
such as photosynthesis or phototropism [1]. They are found in food products, and they
are present in enzymes and photoreceptors [1]. They are active chromophores in the
processes of oxidation and reduction that take place in cells. It is well known that flavin
acts as a cofactor for oxidoreductases, and this property is exploited in several biological
and chemical oxidation reactions [1]. For example, it was previously reported that DNA
in the presence of riboflavin is damaged under UV-A irradiation [2–6], with the ability
to cause mutations associated with this [7–9]. To apply the oxidizing capacity of flavin
for various purposes, formylmethylflavin (FMF) is used as a raw material for further
derivatization [10–19].

Previous studies have reported bisflavin compounds having two flavins [20], and these
molecules have a new catalytic activity or molecular recognition [21–24]. We report here the
facile synthesis of a novel bisflavin. The title compound, N′1,N′4-bis(2-(7,8-dimethyl-2,4-
dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl)ethylidene)succinohydrazide (1), was synthe-
sized and characterized as follows.

2. Results and Discussion

Formylmethylflavin (FMF) was dissolved in acetic acid, a 50% (v/v) aqueous solution.
Succinic acid dihydrazide was added to this solution, and the mixture was stirred for
30 min at room temperature (Figure 1), and the precipitation was formed. This precipitation,
product 1, was characterized as the desired product by NMR (1H-NMR and 13C-NMR),
HRMS, and UV analysis (see Supplementary Files). The structure of 1 is shown in Figure 1.
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Figure 1. Synthesis of N′1,N′4-bis(2-(7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-
yl)ethylidene)succinohydrazide (1).

The precipitate was dissolved in AcOH, and silica gel TLC showed a large spot
(Rf = 0.40) and a small one (Rf = 0.80). Only the small spot was extracted from the silica
gel with solvent, and the TLC analysis of the extracted sample showed both spots having
Rf = 0.40 and 0.80, respectively. When the solvent was changed from AcOH to TFA, the
spot with an Rf = 0.80 was larger than that with an Rf = 0.40. Therefore, the sample with
the Rf = 0.80 spot may have contained a protonated bisflavin.

Bisflavin 1 was poorly soluble in many solvents and barely soluble in DMSO. The 1H-
NMR measurement of this compound was determined by supersaturation concentration.
However, because the supersaturation state could not be maintained for the 13C-NMR
measurements over a long time, a mixture of AcOH-d4 and TFA-d was used. The peak
assignments were made based on a previous report [16] and predictions using ChemOffice.
In addition, the 1H-NMR measurements were confirmed by determining the exchangeable
protons via the addition of D2O and by COSY analysis. We also believe that the complexity
of the spectrum is due to structural polymorphism. For the 13C-NMR measurements, DEPT
was also performed. Peak assignments are shown in the Materials and Methods section.

It has been previously reported that bisflavin makes π-π interactions, which change its
redox state [24,25]. Therefore, bisflavin may have a different photoreactivity than riboflavin,
which will be examined in future works. In addition, bisflavin has been investigated as
a potential inhibitor of amyloid-β [26], and the synthesized product 1 might act as some
kind of inhibitor. Finally, the simple synthetic method reported here will lead to the rapid
synthesis of other bisflavins.

3. Materials and Methods

FMF was synthesized via known methods [13]. FMF (142 mg, 0.5 mmol) was dissolved
in 9 M acetic acid (20 mL, Wako Pure Chemical Industries, Ltd., Osaka, Japan). Succinic
acid dihydrazide (36 mg, 0.25 mmol, Kanto Chemical Co., Inc., Tokyo, Japan) was added to
this solution and the mixture was stirred for 30 min at room temperature. The resulting
precipitate was filtered under a vacuum and washed with water and MeOH (Wako Pure
Chemical Industries, Ltd., Osaka, Japan). The precipitate yielded 101 mg (60%, based
on succinic acid dihydrazide) of a light-yellow solid. The reactions were monitored by
chromatography on TLC Silica Gel 60 glass plates (Merck KGaA, Darmstadt, Germany)
using BuOH:AcOH:H2O = 4:1:1 (BuOH; Kishida chemical Co., Ltd., Osaka, Japan) as an
eluent. FMF had an Rf value of 0.82. The precipitate contained a product showing two
Rf values of 0.40 and 0.80.

The melting/decomposition point was determined with “OptiMelt Automated Melt-
ing Point System” (MPA100; Stanford Research Systems, Sunnyvale, CA, USA). 1H-NMR
and 13C-NMR spectra were recorded on an Avance 400 (Bruker BioSpin, Rheinstetten,
Germany) using DMSO-d6 (Acros Organics, Geel, Belgium) and AcOH-d4:TFA-d = 10:1
(Cambridge isotope laboratories, Inc., Tewksbury, Massachusetts, USA) as the solvent.
Mass spectra were recorded on a mass spectrometer “SYNAPT G2-Si HDMS” (Waters,
Milford, MA, USA). UV absorption spectra (220 to 900 nm) were recorded on an Ultrospec
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3100 pro (GE Healthcare Japan Corporation, Tokyo, Japan) in DMSO (Wako Pure Chemical
Industries, Ltd.).

Melting point: >233 ◦C (decomposition)
UV (DMSO): λmax 440 nm (log ε 4.29), 345 nm (4.10), 270 nm (4.70)
HRESIQ-TOFMS m/z: 677.2333 [M-H]− (calculated for C32H29N12O6, 677.2333)
1H-NMR (400 MHz, DMSO-d6): δ 11.38 (s, 1H), 11.36 (s, 1H), 11.35 (s, 1H), 11.20

(s, 1H), 11.18 (s, 1H), 11.17 (s, 1H), 11.15 (s, 1H) (11.38–11.15; succinohydrazide 1,4-CONH
and flavin 3-NH), 7.95 (s, 1H), 7.92 (s, 1H), 7.91 (s, 1H), 7.90 (s, 1H), 7.86 (s, 1H), 7.81
(s, 1H), 7.77 (s, 1H), 7.74 (s, 1H), 7.72 (s, 1H) (7.95–7.72; flavin H-6,9), 7.73 (t, 1H,
J = 2.8 Hz), 7.37 (t, 1H, J = 3.6 Hz), 7.35 (t, 1H, J = 1.5 Hz) (7.73–7.35; flavin N10-CH2-
CHN), 5.44 (d, 2H, J = 1.5 Hz), 5.41 (d, 2H, J = 3.6 Hz), 5.37 (d, 2H, J = 2.8 Hz) (5.44–5.37;
flavin N10-CH2-CHN), 2.48–2.18 ppm (16H, flavin 7,8-CH3 and CO-CH2-CH2-CO, overlap
with the signal of DMSO)

13C-NMR (100 MHz, AcOH-d4:TFA-d = 10:1): δ 172.5 (succinohydrazide 1-CONH),
156.7 (flavin 2, 4-CO), 156.6 (flavin 2, 4-CO), 145.5 (flavin C4a, 5a, 7, 8, 9a, 10a), 144.8 (flavin
C4a, 5a, 7, 8, 9a, 10a), 141.0 (flavin C4a, 5a, 7, 8, 9a, 10a), 140.8 (flavin C4a, 5a, 7, 8, 9a, 10a), 132.0 (flavin
6,9-CH), 129.2 (flavin C4a, 5a, 7, 8, 9a, 10a), 128.0 (flavin C4a, 5a, 7, 8, 9a, 10a), 82.1 (flavin N10-CH2-
CH), 57.9 (flavin N10-CH2-CH), 53.6 (flavin 7,8-CH3), 27.0 ppm (CO-CH2-CH2-CO)

Silica gel TLC (BuOH:AcOH:H2O = 4:1:1) showed spots (UV, 254 nm) with an
Rf = 0.40 and 0.80.

Supplementary Materials: The following supporting information can be downloaded online, Sup-
plementary File S1: mol file; Supplementary File S2: 1H-NMR; Supplementary File S3: 13C-NMR;
Supplementary File S4: HRMS; Supplementary File S5: UV-VIS.
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