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Abstract: N-alkylacridinium derivatives are some of the most popular azo dye templates. Herein,
we report the synthesis of 3-methoxy-5-methyl-12-phenylbenzacridinium iodide (MMPBAI) via N-
alkylation. The structure of MMPBAI was elucidated using 1H Nuclear magnetic resonance (NMR),
13C NMR, Electronspray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared
spectroscopy (FT-IR). MMPBAI could not visualize double-stranded DNA in agarose gel, although
the structural core would still be interesting as a template for new azo dyes.
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1. Introduction

Acridines and their corresponding cationic form, acridinium, have long been used as
a number of functional dyes; for example, ethidium bromide has been used to visualize
electrophoretic migration behavior in double-stranded DNA in the field of molecular
biology. Recently, reliable and synthetically useful acridinium-based photoredox catalysts
have been developed. Fukuzumi et al. first introduced and popularized acridinium-based
dyes as photoredox catalysts. In this study, the electron-transfer (ET) state of the 9-mesityl-
10-methylacridinium ion was achieved successfully with a longer lifetime and higher
energy than that in the neutral system and without losing energy due to multistep ET
processes [1]. This chemistry allows for the generation of highly reactive intermediates via
photo-induced electron transfer under operationally mild conditions that typically utilize
low-energy visible light. One of the currently developed efficient and scalable methods
for preparing acridinium cores is the direct conversion of xanthylium salts prepared from
biaryl ethers and aromatic esters to the corresponding acridinium by treating them with
amines [2]. To access the π-expanded system, we recently developed a diversity-oriented
doubling strategy that can afford two 12-arylbenzoacridines from a single triarylmethanol
precursor [3,4] and further studied their estrogenic, anti-estrogenic, antibacterial, and
anti-oxidative activities [3–5].

Owing to our interest in N-methyl benzacridinium species, possessing an expanded
conjugated π-electron system, for the preparation of novel azo dyes, we, herein, report
the synthesis of N-methyl benzacridinium iodide 2 and our attempt to utilize it as a DNA-
visualizing agent.

2. Results and Discussion

3-Methoxy-5-methyl-12-phenylbenzacridinium iodide (2) was synthesized via N-
alkylation of the previously reported benzacridine 1 [3,4] with methyl iodide in refluxing
acetonitrile (Scheme 1). The reaction proceeded in a spot-to-spot fashion to furnish 2 in
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84% yield. The structure of 2 was unambiguously confirmed by spectroscopic analyses, in-
cluding Fourier-transform infrared spectroscopy (FT-IR), 1D (1H and 13C), and 2D Nuclear
magnetic resonance (NMR), including correlation spectroscopy (COSY), nuclear Over-
hauser effect spectroscopy (NOESY), heteronuclear multiple-bond correlation (HMBC),
heteronuclear single quantum coherence (HSQC), and high-resolution electronspray ion-
ization mass spectrometry (ESI-MS) (all spectra are shown in Supplementary Material and
a complete summary of the assignments is depicted in Figure S14). The singlet 1H NMR
signal at 4.49 ppm was first assigned to the methoxy protons (OCH3) because it had an
HMBC correlation only with C-3 (Figure S10). Cross peaks from the OCH3 protons in the
NOESY spectrum (Figure S12) could be easily identified as H-2 (7.23 ppm) and H-4 (7.93
ppm). H-1 could be found in a multiplet at 7.79–7.73 ppm by the COSY correlation from
H-2 (Figure S7). The singlet signal at 9.06 ppm was determined to be H-6 through a NOESY
cross-peak with a singlet signal derived from N-methyl protons (5.20 ppm, Figure S12).
H-7 (8.36 ppm) was also identified from the NOESY correlation with H-6 (Figure S13),
whereas H-8 (7.81 ppm), H-9 (7.63 ppm), and H-10 (7.97 ppm) were easily identified by
the COSY experiment. NOESY (Figure S13) from H-10 identified H-11 at 8.49 ppm, which
had another NOESY cross-peak with H-2′ (7.51 ppm). By pursuing COSY correlations from
H-2′, signals for H-3′ and H-4′ were found in a multiplet at 7.79–7.73 ppm. 13C signals were
assigned based on HSQC (Figures S8 and S9). As a result, all 1D and 2D signals agreed
well with the structure of 2 (Figure S14).
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Scheme 1. Synthesis of compound 2.

The DNA visualization ability of the target compound, benzacridinium, was tested.
After electrophoresis of commercially available DNA (marker 3), the agarose gel was treated
separately for 25 min with compounds 2 (127 µM), 3 (127 µM) [3,4], and the most popular
DNA visualizing agent, ethidium bromide (1.27 µM) (Figure 1). Unfortunately, DNA bands
were only detected in the gels treated with ethidium bromide. The bulky and hydrophobic
structures with fewer interacting functionalities (such as amino groups) of 2 and 3 might
have interfered with DNA intercalation.
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Figure 1. Compounds whose DNA visualization ability was tested.

3. Materials and Methods
3.1. Instrumentation

Melting point was recorded on a Yanaco MP-J3 (Tokyo, Japan). UV–Vis spectrum was
recorded on a JASCO V-630 Bio (Tokyo, Japan). IR spectrum was recorded on a JASCO
FT/IR-4000 (Tokyo, Japan). NMR spectra were recorded on JEOL JNM-ECA 600 spectrome-
ter (Tokyo, Japan). Chemical shifts are reported in ppm from tetramethysilane (TMS) with
reference to internal residual solvent [1H NMR: CHCl3 (7.26); 13C NMR: CDCl3 (77.16)].
The following abbreviations are used to designate the multiplicities: s = singlet, d = doublet,
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t = triplet, m = multiplet, and br = broad. High-resolution mass spectrum (HRMS) was
recorded under Bruker microTOFfocus conditions.

3.2. Synthesis of 3-Methoxy-5-methyl-12-phenylbenzacridinium Iodide (2)

3-Methoxy-12-phenylbenzacridine 1 (20.2 mg, 60.2 µmol) and methyl iodide (0.10 mL,
1.6 mmol) were dissolved in acetonitrile (1.0 mL). The reaction mixture was refluxed for
14.5 h under argon atmosphere until the completion of the reaction monitored by TLC. The
crude mixture was concentrated to dryness under reduced pressure, and the residual thin
film on the surface of the flask was washed with diethyl ether (2 mL × 2). The residual
solid was dried in vacuo to afford 2 (24.2 mg, 50.7 µmol, 84%) as reddish-brown needles.

Rf = 0.64 (CH2Cl2/MeOH = 5/1); m.p. 190–194 ◦C; IR (neat) 3041, 2837, 1613, 1584,
1567, 1534, 1483, 1469, 1433, 1413, 1390, 1372, 1350, 1330, 1307, 1249, 1228, 1197, 1169, 1150,
1128, 1102, 1071, 1017, 1002, 957, 938, 909, 883, 863, 829, 813, 787, 754, 737, 701, 672 cm−1;
1H NMR (600 MHz, CDCl3) δ 9.06 (s, 1H, H-6), 8.49 (s, 1H, H-11), 8.36 (d, J = 9.0 Hz, 1H,
H-7), 7.97 (d, J = 7.8 Hz, 1H, H-10), 7.93 (d, J = 2.0 Hz, 1H, H-4), 7.81 (dd, J = 9.0, 7.2 Hz,
1H, H-8), 7.79–7.73 (m, 3H, H-1, H-3′, H-4′), 7.63 (dd, J = 7.8, 7.2 Hz, 1H, H-9), 7.51 (dd,
J = 8.4, 1.8 Hz, 1H, H-2′), 7.23 (dd, J = 9.6, 2.0 Hz, 1H, H-2), 5.20 (s, 3H, N+-Me), 4.49 (s, 3H,
O-Me); 13C NMR (150 MHz, CDCl3) δ 170.4 (C-3), 160.3 (C-12), 147.3 (C-4a), 137.8 (C-6a),
136.2 (C-5a), 133.6 (C-1′), 132.4 (C-1), 132.0 (C-11), 131.6 (C-8), 131.0 (C-10a), 130.6 (C-4′),
130.0 (2C, C-2′), 129.2 (2C, C-3′), 129.0 (C-10), 128.7 (C-7), 127.9 (C-9), 123.2 (C-11a), 122.4
(C-2), 121.9 (C-12a), 115.8 (C-6), 97.7 (C-4), 59.7 (O-Me), 42.0 (N+-Me); HRMS (ESI-TOF)
m/z 350.1541 [M − I]+ (calcd. for C25H20ON+, 350.1539).

4. Conclusions

In summary, we reported the synthesis of N-methylbenzacridinium iodide 2 in a
good yield via N-alkylation of 3-methoxy-12-phenylbenzacridine 1 with methyl iodide. In
addition to its ease of operation, this protocol offered a clean reaction profile. Although 2
could be employed as a novel azo-dye template, DNA intercalation could not be visualized.

Supplementary Materials: The following supporting information for the characterization of 2 can
be downloaded online: Molfile of Compound 2; Figure S1: IR spectrum (neat); Figure S2: HRMS
(ESI-TOF) spectrum; Figure S3: 1H NMR spectrum (600 MHz, CDCl3); Figure S4: Assignment of 1H
NMR; Figure S5: DEPT 90 (150 MHz, CDCl3, top) and 13C NMR spectra (150 MHz, CDCl3, bottom);
Figure S6: Assignment of 13C NMR; Figure S7: Assignment of COSY spectrum (600 MHz, CDCl3);
Figure S8: Assignment of HSQC spectrum (part 1, 600/150 MHz, CDCl3); Figure S9: Assignment of
HSQC spectrum (part 2, 600/150 MHz, CDCl3); Figure S10: Assignment of HMBC spectrum (part 1,
600/150 MHz, CDCl3); Figure S11: Assignment of HMBC spectrum (part 2, 600/150 MHz, CDCl3);
Figure S12: Assignment of NOESY spectrum (part 1, 600 MHz, CDCl3); Figure S13: Assignment of
NOESY spectrum (part 2, 600 MHz, CDCl3); Figure S14: Summary of the assignments of 1H NMR,
13C NMR, COSY, HMBC, and NOESY spectra.
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