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Abstract: Access to perfluorinated compounds represents a growing challenge in the academic and
industrial fields to achieve target compounds with specific physico-chemical properties. Especially,
the insertion of a perfluorinated chain within an ionic liquid can provide improvements not just in
terms of hydrophobicity and lipophobicity, but also viscosity, density as well as thermal stability.
In this research area, we have recently developed new access points to several epoxy imidazolium
salts combined with fluorinated anions such as bistriflimide (NTf2

−), hexafluorophosphate (PF6
−) or

tetrafluoroborate (BF4
−). Here, we reported the synthesis of a perfluorinated imidazolium cation

associated with a sulfonate anion as a new functionalized partner. This sequence required four steps
from imidazole (cationic part) and three steps from sodium 4-hydroxybenzenesulfonate (anionic part),
respectively. This perfluorinated ionic liquid was fully characterized by nuclear magnetic resonance
with 1H-NMR, 19F-NMR, 13C-NMR, DEPT, COSY, HSQC, HMBC and IR spectroscopy. The two
parts of the salt were confirmed by high-resolution mass spectrometry (HRMS), and we combined
thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) to determine the
thermal properties of this new compound.

Keywords: perfluorinated imidazolium; sulfonate; epoxides; ionic liquid

1. Introduction

In ionic liquids chemistry, the anion strongly influences the physico-chemical prop-
erties and the final applications of the salt [1,2]. To this end, fluorinated anions have
been particularly studied to achieve tailor-made characteristics by improving thermal and
chemical stability. Until now, we have essentially found the imidazolium cation linked to a
bis(trifluoromethyl)sulfonimide (NTf2), hexafluorophosphate (PF6) and tetrafluoroborate
(BF4), leading to hydrophilic or hydrophobic salts [3]. Among the other fluorinated anions,
we report the trifluoromethylsulfonate ion (triflate CF3SO3) and sulfonate analogs which
also display interesting properties [4,5]. As an example, the perfluorooctane sulfonate
anion (PFOS) is a fluorinated surfactant widely used by industry to provide materials such
as textiles or paper with resistance to water, oils and greases [6]. Unfortunately, these PFOS
represent a toxic class of persistent organic pollutants that we find in the environment and a
large number of wildlife species [7]. In recent decades, some fluorinated ionic liquids have
been applied in this sensitive area including the recovery of persistent perfluorocarbon
contaminants from industrial effluents [8].

Regarding this environmental and public health aspect, thermosetting resins also
represent a sensitive point. These resins are widely used through the bisphenol A diglycidyl
ether (DGEBA) prepolymer which results from the reaction of toxic and carcinogenic
compounds, i.e., bisphenol A and epichlorohydrin. To avoid the use of these reagents
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and promote the emergence of new epoxy resins, we have developed an efficient way
to epoxidized imidazoliums as new precursors of poly(ionic liquids) [9]. These ionic
liquids exhibit excellent thermal stability when the cation is combined with a triflimide [10].
Nevertheless, this unmodifiable anion requires a more judicious and flexible strategy to
functionalize and develop new applications while preserving the properties brought by the
perfluorinated chain. In this context, we considered the synthesis of a perfluorinated cation
allowing the functionalization of a sulfonate anion by an epoxide.

Based on our previous data [10,11], this work aims to confirm a new rapid and robust
way to a diepoxy and perfluorinated ionic liquid. As we noted previously, the sulfonate
anion represents a great interest in many applications. Moreover, this salt promotes
good cross-linking with the presence of an epoxide on the anion and the cation for the
development of ionic perfluorinated polymers. NMR, IR and HRMS analyzes will validate
the purity of the salt while TGA and DSC will assess its potential in polymer chemistry
(Supplementary Materials).

2. Results and Discussion

Although 1-vinylimidazole is a commercially available reagent, we opted for the
synthesis of 1-(3-buten-1-yl)imidazole 1, which makes more sense in this sequence with a
more oxidizable alkene. Thus, imidazolium iodide 2 was synthesized by two consecutive
nucleophilic substitutions of the imidazole. The first alkylation required sodium hydride
to improve the reactivity of the heterocycle and a catalytic amount of iodide potassium
to achieve an efficient reaction with 4-bromo-1-butene. After 18 h at reflux, 1-(3-buten-1-
yl)imidazole 1 was isolated in a 72% yield—this reaction can be carried out over several
grams did not require purification. For the second step, we started from a stoichiometric
amount of the previous N-alkylated imidazole and 1H,1H,2H,2H-perfluooctyl iodide at
reflux of acetonitrile. This quaternization reaction was followed by 1H-NMR and TLC (see
part IVa of the Supplementary Materials) affording 71% of salt after 24 h without significant
improvement after 48 h. Thereafter, this alkylation was performed with 2 equivalents of
perfluooctyl iodide to reach 89% of imidazolium 2 after 48 h at 80 ◦C (Scheme 1). After
reaction, the unreacted starting material was eliminated by two successive treatments with
hydrochloric acid (10%). This fluorinated salt 2 behaved as a surfactant during washing
(see part IVb of the Supplementary Materials). Depending on the NMR result, flash
chromatography on silica gel can be used as a second complementary method to isolate
pure imidazolium 2.
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Scheme 1. Synthesis of perfluorinated imidazolium sulfonate salt (5). (i) Despite the use of K2CO3 (2
eq.), a sodium sulfonate salt was considered for the next step. (ii) The reaction was carried out with
one equivalent of 3 in two stages to allow a more efficient anion exchange.
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At the same time, sodium 4-hydroxybenzenesulfonate was used as a widely available
and inexpensive starting material of functionalized sulfonate anions. Once again, we
used 4-bromo-1-butene to generate a particularly interesting terminal alkene in the anionic
part of the salt. After optimization, an excess of alkylating reagent was required in the
presence of potassium carbonate to give sulfonate 3 in 89% yield after 24 h in methanol.
To exchange iodide of imidazolium 2, an anionic metathesis was carried out in a mixture
dichloromethane/water (1/1) using a stoichiometric amount of sulfonate 3 previously
synthesized. After 24 h at room temperature, imidazolium sulfonate 4 was mainly observed
with a conversion of 59%. This anion exchange was slightly improved by using two
equivalents of 3 to reach 70% under similar conditions as the previous attempt. This
optimization confirmed the advantage of using an excess of sulfonate 3 but in a two-step
addition by stirring a stoichiometric mixture of homemade sulfonate 3 and imidazolium 4
for 24 h before adding one more equivalent of sulfonate to generate a complete exchange
of the iodide (see Section 3.5). Under these optimized conditions, several extractions with
dichloromethane provided the pure perfluorinated salt with an isolated yield of 91%.

This new ionic liquid 4 was oxidized in the presence of freshly prepared dimethyldioxi-
rane (2.8 eq.) in acetone [12]. The reaction mixture was stirred at room temperature until
the reaction was completed (1H-NMR monitoring). After 4 h, perfluorinated imidazolium
sulfonate bearing two epoxides 5 was isolated in 92% yield. Additionally, an excess of
mCPBA (5 eq.) was also used as another oxidizing reagent to give 90% of 5 after 24 h at
40 ◦C in acetonitrile.

In this sequence, the perfluorinated imidazolium sulfonate 5 was synthesized in 54%
overall yield from imidazole, 4-bromo-1-butene, 1H,1H,2H,2H-perfluooctyl iodide, and
sodium 4-hydroxybenzenesulfonate. This procedure does not require any purification by
silica gel column chromatography during the entire sequence. This efficient pathway is
reproducible and can be performed on a large scale in the laboratory. The structure and
the purity of this new ionic liquid was confirmed by nuclear magnetic resonance using
1H-NMR, 19F-NMR, 13C-NMR, DEPT, COSY, HSQC, HMBC and Infrared spectroscopy (see
part I of the Supplementary Materials). High-resolution mass spectrometry confirmed the
two subparts of this salt with a cation [M]+ at 485.0910 with the formula C15H14N2OF13
and an anion [M]− at 243.0324 with the formula C10H11O5S.

The last part of this work was devoted to the thermal properties of this perfluorinated
imidazolium salt. The thermal stability was carried out by thermogravimetric analysis
(TGA) using a Perkin Elmer Pyris 1 TGA working under nitrogen atmosphere with flow
rate 20 mL·min−1 and heating 20 K·min−1. The weight loss as a function of temperature
was analyzed to determine the degradation temperature and the percentage of degradation
of this salt. In previous studies, we reported the excellent thermal behavior for several
diepoxy aryl-imidazolium triflimide salts (Figure 1, model A) with a maximal degradation
temperature above 390 ◦C. Homemade perfluorinated sulfonimides (Figure 1, model B)
afforded similar thermal stability. Very recently, new promising diepoxidized salts were
described with sulfonate as a versatile counterion. In this unprecedented series, good ther-
mal properties were observed around 375 ◦C to reach 411 ◦C with trifluoromethylsulfonate
(Figure 1, model C) as counter-anion [13]. Here, by transferring the fluorinated chain to the
imidazolium, the highly functionalized ionic liquid (Figure 1, model D) showed a mass
loss of only 10% at 245 ◦C to reach a Tmax of 346 ◦C.

Finally, the thermal behavior of this salt was investigated by differential scanning
calorimetry to determine the glass transition temperature, i.e., Tg. A glass transition
temperature of −32 ◦C was obtained corresponding to the Tgs obtained in our previous
studies [9–11] opening some perspectives in the field of solid electrolytes where a lower Tg
is required to reach the optimal ionic conductivity.
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Figure 1. Example of diepoxy perfluorinated salts in relation to sulfonate 5. Model A: Unmodi-
fied commercial triflimide; Model B: Homemade perfluorinated sulfonimide; Model C: Unmod-
ified commercial trifluoromethylsulfonate; Model D: Homemade functionalized sulfonate with
perfluorinated imidazolium.

3. Materials and Methods
3.1. Chemistry

All reagents were purchased from Sigma Aldrich, Alfa Aesar, Acros Organic or TCI
and were used as received: mCPBA (≤77% from Sigma Aldrich), 4-bromo-1-butene (97%
from Alfa Aesar), anisole (>99% from Sigma Aldrich), potassium carbonate (99% from
Acros Organic), imidazole (from TCI), perfluooctyle iodide (96% from Sigma Aldrich),
sodium hydride (60% from Sigma Aldrich), Sodium 4-Hydroxybenzenesulfonate (<98%
from TCI). DMDO was prepared according to the procedure described by D. F. Taber [12].
Solvents were used in RPE grade without further purification. Anhydrous solvents were
obtained from a PURESOLV SPS400 apparatus developed by Innovative Technology Inc.
1H-, 19F- and 13C-NMR spectra were recorded on a Bruker Avance III 500 MHz or Avance
NEO 600 MHz spectrometer. Samples were dissolved in an appropriate deuterated solvent
(CDCl3, CD3CN, D2O and acetone-d6). The chemical shifts (δ) are expressed in ppm relative
to internal tetramethylsilane for 1H and 13C nuclei and coupling constants are indicated in
Hz. Abbreviations for signal coupling are as follows: s = singlet; d = doublet; dd = doublet
of doublets; t = triplet; q = quartet; m = multiplet. To assign the signals to the different
proton and carbon atoms, additional 2D NMR experiments (COSY, HSQC, HMBC and
DEPT) were performed. High-resolution mass spectra (HRMS) were performed on Acquity
UPLC H-Class Xevo G2-XS QTof (WATERS) by electrospray ionization (ESI). Infrared (IR)
spectra were recorded with a Perkin Elmer 16 PC FTIR ATR spectrometer, using the pure
product (oil or solid). Thermographic analyses were recorded with Perkin Elmer Pyris 1
TGA, working under azote atmosphere with flow rate 20 mL/min and heating 20 ◦C/min.
Thin layer chromatography (TLC) was run on pre-coated aluminum plates of silica gel 60
F-254 (Merck). Flash chromatography was performed on silica gel column (Merck silica gel,
40–63 mm).

3.2. Synthesis of 1-(3-buten-1-yl)imidazole 1

To a round-bottom flask purged with Ar, imidazole (5.00 g, 73.5 mmol, 1.0 eq) was added
to a suspension of NaH (5.88 g, 147 mmol, 2.0 eq) in dry THF (100 mL) at 0 ◦C. The reaction was
stirred for 30 min and we completed the mixture with 4-bromobutene (1.06 mL, 10.54 mmol,
2.0 eq) and potassium iodide (0.61 g, 3.60 mmol, 0.05 eq). After 18 h at 60 ◦C, the solvent was
removed under reduced pressure. The residue was partitioned between CH2Cl2 and water
and the organic layer was washed with NH4Cl saturated (2 × 10 mL). The combined organic
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extracts were dried over MgSO4, and concentrated under reduced pressure to afford product 1
as a clear yellow oil (6.45 g, 72%).

1H-NMR (600 MHz, CDCl3) δ 7.44 (s, 1H), 7.02 (s, 1H), 6.91 (s, 1H), 5.75–5.68 (m, 1H),
5.07–5.04 (m, 2H), 3.98 (t, J = 6.9 Hz, 2H), 2.50 (q, J = 6.9 Hz, 2H).

13C-NMR (151 MHz, CDCl3) δ 136.9, 133.5, 129.1, 118.7, 118.0, 46.3, 35.2.
IR (neat) cm−1 3379, 3108, 2979, 1641, 1507, 1438, 1359, 1283, 1228, 1108, 1077, 1036,

907, 814.
HRMS m/z (ESI): calcd. for C7H11N2 [MH]+: 123.0922, found: 123.0923.

3.3. Synthesis of 1-[1H,1H,2H,2H-perfluooctyl]-3-(3-buten-1-yl)imidazolium Iodide 2

To a solution of 1-(3-buten-1-yl)imidazole (0.24 g, 2 mmol, 1.0 eq) in CH3CN (10 mL)
was added 1H,1H,2H,2H-perfluooctyl iodide (0.9 mL, 4 mmol, 2.0 eq). The mixture
was refluxed at 80 ◦C and regularly monitored by 1H-NMR or TLC with a solution of
dichloromethane/methanol (9/1). After cooling to room temperature, the solvent was
removed under reduced pressure. The residue was partitioned between CH2Cl2 and water
and the organic layer was washed with HCl (1M) (2 × 10 mL). The combined organic
extracts were dried over MgSO4, and concentrated under reduced pressure to afford prod-
uct 2 as a clear yellow oil (1.04 g, 89%). If necessary, the product can be purified by flash
chromatography on silica gel with CH2Cl2/MeOH (9/1).

1H-NMR (600 MHz, CDCl3) δ 10.24 (s, 1H), 7.56 (s, 1H), 7.36 (s, 1H), 5.83–5.76 (m, 1H),
5.14–5.08 (m, 2H), 4.87 (t, J = 6.5 Hz, 2H), 4.30 (t, J = 6.7 Hz, 2H), 2.98–2.90 (m, 2H), 2.72–2.69
(m, 2H).

13C-NMR (151 MHz, CDCl3) δ 137.4, 131.9, 122.7, 122.1, 120.1, 118.1 (CF3), 116.1 (5
CF2), 49.7, 42.6, 34.2, 31.9.

19F-NMR (376 MHz, CDCl3) δ −80.8, −113.4, −121.8, −122.8, −123.2, −126.2.
IR (neat) cm−1 3054, 2882, 1772, 1563, 1422, 1265, 1240, 1145, 896, 735.
HRMS m/z (ESI): calcd. for C15H14F13N2 [M]+: 469.0949, found: 469.0953.

3.4. Synthesis of Sodium 4-(3-buten-1-yloxy)benzenesulfonate 3

To a solution of sodium 4-hydroxybenzenesulfonate (3.0 g, 12.9 mmol, 1 eq) and
potassium carbonate (4.10 g, 117 mmol 2.0 eq) in methanol (30 mL) was added 4-bromobut-
1-ene (4.06 mL, 40.1 mmol, 3.1 eq). The reaction mixture was stirred at 65 ◦C for 4 days. The
solid residue was filtered and the solvent was concentrated under pressure. The product 3
was obtained as a white solid (2.92 g, 89%).

1H-NMR (500 MHz, D2O) δ 7.66 (d, J = 8.5 Hz, 2H), 6.99 (d, J = 8.5 Hz, 2H), 5.90–5.82
(m, 2H), 5.14–5.04 (m, 1H), 4.11 (t, J = 6.4 Hz, 2H), 2.49–2.45 (m, 2H).

13C-NMR (126 MHz, D2O) δ 160.5, 135.2, 127.5 (×2), 117.2, 115.6, 115.0 (×2), 67.9, 32.8.
IR (neat) cm−1 3432, 3059, 2970, 1738, 1643, 1638, 1499, 1473, 1231, 1180, 1139, 1065,

1031, 1007, 900.
Mp: >300 ◦C
HRMS m/z (ESI): calcd. for C10H11O4S [M]−: 227.0378, found: 227.0370.

3.5. Synthesis of 1-[1H,1H,2H,2H-perfluooctyl]-3-(3-buten-1-yl)imidazolium
4-(3-buten-1-yloxy)benzenesulfonate 4

To a stirred solution of sodium sulfonate 3 (40 mg, 0.16 mmol, 1.0 eq) in biphasic
solution CH2Cl2/H2O (1:1, v/v) (8 mL) was added imidazolium iodide 2 (100 mg, 0.16 mmol,
1.0 eq). The mixture was stirred at room temperature for 24 h. The organic compounds
were extracted with dichloromethane, dried with MgSO4 and concentrated under reduced
pressure. After NMR analysis, an excess of sodium sulfonate (1.0 eq) was used to complete
the reaction. This mixture was stirred at room temperature for another 24 h. The product
4 was extracted with dichloromethane, dried with MgSO4 and then concentrated under
reduced pressure to afford a yellow clear oil (101 mg, 91%).

1H-NMR (600 MHz, CDCl3) δ 9.82 (s, 1H), 7.77 (d, J = 8.8 Hz, 2H), 7.58 (s, 1H), 7.37
(s, 1H), 6.83 (d, J = 8.8 Hz, 2H), 5.90–5.84 (m, 1H), 5.70–5.63 (m, 1H), 5.16–5.08 (m, 2H),
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5.02–4.95 (m, 2H), 4.70 (t, J = 6.5 Hz, 2H), 4.28 (t, J = 6.8 Hz, 2H), 3.98 (t, J = 6.7 Hz, 2H),
2.81–2.73 (m, 2H), 2.56–2.50 (m, 4H).

13C-NMR (151 MHz, CDCl3) δ 159.9, 138.7, 137.8 (×2), 134.2, 132.2 (×2), 127.4, 122.8,
122.2, 119.5, 118.1 (CF3), 117.1, 110.8 (5 CF2), 113.9, 67.3, 49.2, 42.2, 34.2, 33.5, 26.9.

19F-NMR (376 MHz, CDCl3) δ −85.8, −118.46, −126.8, −127.9, −128.2, −131.2.
IR (neat) cm−1 3050, 2772, 1780, 1610, 1423, 1265, 1240, 1188, 1121, 1078, 1004, 835, 735.
HRMS m/z (ESI): calcd. for C15H14F13N2 [M]+: 469.0949, found: 469.0958, calcd. for

C10H11O4S [M]−: 227.0378, found: 227.0378.

3.6. Synthesis of 1-[1H,1H,2H,2H-perfluooctyl]-3-[2-(Oxiran-2-yl)ethyl]imidazolium
4-[(2-oxiran-2-yl)ethoxy]benzenesulfonate 5

To a solution of compound 4 (50 mg, 0.071 mmol, 1.0 eq) in acetone (0.50 mL) freshly
prepared DMDO (0.044 mol/L) (4.57 mL, 0.20 mmol, 2.8 eq) was added. The reaction
mixture was stirred at room temperature for 4 h. Two drops of DMS were added to
neutralize the excess of DMDO. The solvent was evaporated under reduced pressure and
the product 5 was obtained as a red clear oil (48 mg, 92%).

1H-NMR (500 MHz, CD3CN) δ 8.73 (s, 1H), 7.56 (d, J = 9.2 Hz, 2H), 7.41 (s, 1H), 7.37 (s,
1H), 6.77 (d, J = 9.1 Hz, 2H), 4.45 (t, J = 7.2 Hz, 2H), 4.25–4.22 (m, 2H), 4.05–4.03 (m, 2H),
2.99–2.96 (m, 1H), 2.88–2.85 (m, 1H), 2.81–2.72 (m, 2H), 2.66–2.65 (dd, J = 4.7 and 4.0 Hz,
1H), 2.6–2.61 (dd, J = 4.7 and 4.0 Hz, 1H), 2.44–2.43 (dd, J = 5.0 and 2.7 Hz, 1H), 2.36–2.35
(dd, J = 5.0 and 2.7 Hz, 1H), 2.14–2.09 (m, 1H), 1.94–1.89 (m, 1H), 1.84–1.79 (m, 2H).

13C-NMR (126 MHz, CD3CN) δ 159.7, 141.4, 137.4, 127.8 (×2), 123.4, 123.2, 123.2 (CF3),
114.1 (×2), 111.2 (5 CF2), 65.5, 49.8, 49.3, 47.6, 46.9, 46.4, 42.2, 32.9 (×2), 32.7.

19F-NMR (376 MHz, CD3CN) δ −81.5, −114.4, −122.3, −123.3, −124.1, −126.6.
IR (neat) cm−1 3100, 2769, 1598; 1188, 1144, 1121, 1078, 1004, 961, 835, 809, 746, 699.
HRMS m/z (ESI): calcd. for C15H14N2OF13 [M]+: 485.0899, found: 485.0910, calcd. for

C10H11O5S [M]−: 243.0327, found: 243.0324.

4. Conclusions

In conclusion, we have synthesized a perfluorinated imidazolium cation combined
with a sulfonate as a new functionalized counter-anion. This ionic liquid incorporating an
aromatic ring and terminal epoxides on the two parts of the salt is a promising candidate
for perfluorinated poly(ionic liquid)s. This diepoxide salt was obtained in four steps from
imidazole and sulfonate 3. After optimization, the final compound was characterized by
1H-, 13C-, and 19F-NMR but also COSY, HMBC, HSQC and IR spectroscopy. We analyzed
this ionic liquid by HRMS spectrometry, thermogravimetric analysis (TGA) and differential
scanning calorimetry (DSC) to confirm its high purity and thermal behavior.

Supplementary Materials: The following supporting information are available online: copies of the
NMR spectra for all the compounds, IR spectra and TGA curve.
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