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Abstract: (E)-3-Methyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium iodide 1 was prepared by a
convenient and reliable reaction procedure. The slight molar excess of the starting benzaldehyde and
the mixture of ethanol: ethyl acetate in the ratio 3:1 as a solvent afforded a pure reaction product. The
photophysical properties of the dye in a TE buffer in the absence and presence of double-stranded
DNA (dsDNA) were elucidated. The low intrinsic fluorescence of 1 in TE buffer is followed by an
increase in the fluorescence after dsDNA binding. The dye is nontoxic for stem cells from apical
papilla and the most concentrated fluorescence is detected in the cell nucleoli.
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1. Introduction

The styryl dyes are a class of the so called polymethine dyes or cyanine dyes. After
the discovery of the styryl dyes in 1920 [1] by König, many new representatives were
synthesized. The later discovery of polyacrylic fibers led to the application of styryl dyes
on the dyeing of such fibers with good dyeing properties [2]. Styryl dyes are usually
more photostable than the classic cyanine dyes. In the past styryl dyes were mainly used
as sensitizers and additives in the photographic industry [3–8], and in optical recording
media in laser disks [9] as flexible dyes [10] and laser dyes [11] and as optical sensitizers in
various other fields [12–15]. A very extensive range of styryl dyes have, therefore, been
developed since these compounds were first synthesized. The synthesis, applications and
photoluminescence properties of a wide variety of styryl dyes had been reviewed in detail
by the end of 1990s [2,16] and by our group [17] about ten years later. For more than
sixty years the main application of the styryl cyanine dyes were mainly as sensitizers in
photographic emulsions until the systematic work done by Yarmoluk and co-workers [18]
who demonstrated the ability of the styryl cyanine dyes to bind different nucleic acids as
intercalators or mainly as groove binders [19–21]. The investigated styryl dyes demon-
strated an increase by several times of the fluorescence in a presence of nucleic acids. In the
meantime, Li and Chang published protocols for the preparation of novel styryl dyes and
their RNA binding and live cell staining [22]. Later, Lu et al. described [23] the synthesis
and the photo physical properties of a new RNA-selective fluorescent dye integrated with a
thiazole orange and a p-(methylthio)styryl moiety. The authors demonstrated that the new
thiol containing styryl dye had better nucleolus RNA staining and imaging performance
in living cells than the commercial stains [23]. It also exhibits excellent photostability, cell
tolerance and counterstain compatibility with 4′,6-diamidino-2-phenylindole for specific
RNA–DNA colocalization in bioassays [23]. The interesting and useful research described
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above have stimulated us to search for new fluorogenic biolabeling reagents for nucleic
acids and living cells visualization.

2. Results and Discussion
2.1. Synthesis of Monomethyne Cyanine Dye 1

Monomethyne cyanine dye 1 was prepared through a two-step synthetic procedure,
shown in Scheme 1. The starting materials—2-methylbenzo[d]thiazolium salt (2a) and 4-
thiomorpholinobenzaldehyde (3a) were synthesized according to a method reported in the
literature, which provides higher yields and satisfactory purity of the compounds [24,25].
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Scheme 1. Synthesis of (E)-3-methyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium iodide (1).

The condensation of 2a and 3a was achieved in the presence of piperidine as a base,
replacing ethanol—the solvent usually used in this type of reaction with a mixture of
solvents (ethanol and ethyl acetate) taken in a 3:1 ratio. The addition of ethyl acetate to
the reaction mixture reduces the solubility of the target dye in ethanol and allows it to be
isolated as a methyl sulfate in a high yield and sufficiently pure form after the end of the
reaction. The replacement of the methyl sulfate ion with an iodide ion was carried out
with potassium iodide in methanol at room temperature, and the target styryl dye 1 was
obtained in 96% yield without requiring any additional purification.

2.2. Photophysical Properties of Dye 1 in the Absence and in the Presence of dsDNA

To verify that dye 1, which was obtained by us, was suitable for a fluorogenic marker
for labeling nucleic acids, we examined its photophysical properties in a TE buffer pure
and in the presence of dsDNA. Figure 1A shows the change in intensity of the longest
wavelength absorption band after the addition of double-stranded DNA in 0.25 µg/mL
increments. The bathochromic shift of the absorption maxima from 490 nm to 506 nm
combined with the hypochromic one is evidence for the formation of the dye–dsDNA
complex and for the probable intercalation mode of binding [26].
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The addition of the dsDNA with the above-mentioned step (0.25 µg/mL) leads to a
significant increase (almost ten times) in the fluorescence of the dye 1–dsDNA complex
(Figure 1B). The promising photo physical properties of the dye made us ambitious to
research its behavior in living cells.

We used mesenchymal stem cells from apical papilla (SCAP) between the 3rd and 5th
passages for the experiments. SCAP treated with newly synthesized fluorescent dye 1 were
examined on an InCell Analyzer 6000 with high throughput analysis. Figure 2 shows a
representative sample of the fluorescent paint method code. This analysis establishes the
process of penetration, intracellular binding and metabolism of the dye. It was found that
dye 1 passes freely through the cell membrane and does not cause cell death. Afterwards,
the dye targets the nucleoli and the endoplasmic reticulum, and we speculate it has RNA
affinity in the cells. This interesting finding provides an idea for further applications of the
dye as the marker of retrovirus activity in living cells or even for its use as a theragnostic
reagent. The investigations in this field are in progress and will be published elsewhere.
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Figure 2. Fluorescence of dye 1 with cell organelles in stem cells from apical papilla.

3. Materials and Methods
3.1. General

All reagents and solvents are commercially available and used as supplied. The 2,3-
Dimethylbenzo[d]thiazol-3-ium methyl iodide (2a) [24] and 4-thiomorpholinobenzaldehyde
(3a) [24] were synthesized starting from 2-methyl benzo[d]thiazole (2) and 4-fluorobenzaldehyde
(3), respectively, according to the previously published research methods in the literature [25].
The progress of the chemical reactions was monitored by thin layer chromatography (TLC)
ALUGRAM® SIL G/UV 254-60 Macherey-Nagel, ready-to-use plates with thickness of the
silica layer at 0.2 mm. Melting points of 1, 2a and 3a were determined on Kruess M5000
melting point meter for automatic measurements. NMR spectra (1H-, 13C-NMR) were obtained
on a Bruker Avance II+ NMR spectrometer operating at 500 MHz for 1H- and 125 MHz
for 13C-NMR in DMSO-d6 as a solvent (Supplementary Materials). The chemical shifts are
given in ppm (δ) using tetramethylsilane (TMS) as an internal standard. The mass spectra of
dye 1 was obtained on an Advion expression CMS mass spectrometer in “High temperature
and low fragmentation” regime and analyzed by using Advion CheMS Express software
version 5.1.0.2. IR spectra is obtained on Specord 71 (Carl-Zeiss Jena) spectrometer in Nujol
as a solvent. UV-VIS spectra were measured on a Unicam 530 UV-VIS spectrophotometer
(with concentration of dye 1 C = 1× 10−5 M) and the fluorescence spectra were obtained on
a Fluorolog 2 (C = 1× 10−6 M.) fluorescence spectrophotometer in quartz cuvettes and in TE
buffer (10 mM TRIS, 1 mM EDTA, pH 8). The nucleic acid used is dsDNA (49 µg/mL) (Salmon
sperm dsDNA, AppliChem, 64291 Darmstadt, Germany). The dye investigated was slightly
soluble in redistilled water and DMSO, therefore, fresh stock solutions (1 mM) were prepared in
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DMF, and further diluted with TE-buffer. The apical papilla of teeth without fully developed
roots were gently separated from the root and pulp. The tissue sample was digested with
3 mg/mL collagenase I/4 mg/mL dispase for 1 h at 37 ◦C and 4% CO2. After reaching 80%,
confluence cells were transferred to 48 well plates. After 24 h, the dyes in their respective
concentrations were added to every well for another 24 h. Unstained cells were used for
determining auto-fluorescence. InCell Analyzer 6000 was used for visualization of the native
cellular permeability for the dyes.

3.2. Synthesis of (E)-3-Methyl-2-(4-thiomorpholinostyryl)benzo[d]thiazol-3-ium iodide (1)

The 2,3-Dimethylbenzo[d]thiazol-3-ium methyl sulfate (2a, 0.2 g, 0.77 mmol), in slight
excess of 4-thiomorpholinobenzaldehyde (3a, 0.183 g, 0.89 mmol, 1.15 eq) and piperidine
(0.1 mL) were dissolved in 8 mL of ethanol/ethyl acetate mixture (3:1) and were refluxed
for 4 h. After the end of the reaction, the resulting precipitate from (E)-3-methyl-2-(4-
thiomorpholinostyryl)benzo[d]thiazol-3-ium methyl sulfate was filtered off and washed
with ethanol. The crude product was obtained as methyl sulfate salt was dissolved in
methanol at room temperature and converted into the corresponding iodide 1 adding
potassium iodide (0.128 g, 0.77 mmol), which was dissolved in a minimal amount of
water. Yield of 1: 0.355 g (96%), mp 225–226 ◦C. 1H–NMR (DMSO-d6, δ (ppm)): 2.67 (brs,
4H, H–CH2), 3.89 (brs, 4H, H–CH2), 4.26 (s, 3H, H–N+CH3), 7.06 (d, 2H, H–Ph, 3J = 8.5
Hz), 7.69–7.72 (m, 2H, H–Ar, H–St), 7.81 (t, 1H, H–Ar, 3J = 8.0 Hz), 7.92 (d, 2H, H–Ph,
3J = 8.5 Hz), 8.08 (d, 1H, H–St, 3J = 15.0 Hz), 8.13 (d, 1H, H–Ar, 3J = 8.0 Hz), 8.33 (d, 1H,
H–Ar, 3J = 8.0 Hz). 13C–NMR δ = 172.07 (C), 152.81 (C), 150.02 (CH), 142.45 (C), 133.30
(2CH), 129.45 (CH), 128.13 (CH), 127.48 (C), 124.37 (CH), 123.19 (C), 116.62 (CH), 114.34
(CH), 108.12 (CH), 49.95 (2CH2), 36.23 (CH3), 25.69 (2CH2). 13C–DEPT–135 δ = 150.02 (CH),
133.30 (2CH), 129.45 (CH), 128.13 (CH), 124.37 (CH), 116.62 (CH), 114.34 (CH), 108.12 (CH),
49.95 (2CH2), 36.23 (CH3), 25.69 (2CH2). IR (ν = cm−1): 605 (C–S), 705 (CH2–S), 750 (C–S),
802 (C=C), 935 (C=C), 1105 (C–N), 1175 (C–N), 1280 (=C–N), 1295 (=C–H), 1340 (=C–H),
1380 (=C–H), 1397 (=C–H), 1440 (=C–H), 1500 (=C–H), 1565 (C=C). ESI-MS: calc. 339.5,
found 339.0.

4. Conclusions

A new styryl dye with thiomorpholine functionality for DNA and cell components
visualization was prepared by an improved, convenient and reliable reaction procedure.
The dye demonstrated low intrinsic fluorescence in the TE buffer and a significant increase
in the fluorescence after dsDNA binding. The dye is nontoxic for stem cells from apical
papilla and is suitable for cell nucleoli visualization.

Supplementary Materials: The following data are available online: 1H-NMR, 13C-NMR, IR spectra
and mass spectra of 1.
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