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1. Introduction

The simple aromatic compound diethyl 2,5-dihydroxy-3,6-diiodoterephthalate 1 (Scheme 1)
was first reported in the literature in 1899 [1]. Rather remarkably, there have been no further
references to it since then, and the only experimental data for it is a melting point. In
the course of studies on new linkers for metal organic framework (MOF) materials, we
prepared the compound, intending to hydrolyse it to give the so-far unknown dihydroxy-
diiodoterephthalic acid. In fact, we were unable to hydrolyse 1 to the corresponding diacid,
and this prompted further investigation of its structure including analysis by NMR and
X-ray diffraction. In this paper, we present full characterisation of 1 for the first time, includ-
ing UV, IR 1H and 13C NMR spectra and its X-ray structure (see Supplementary Materials).
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1 for the first time, including UV, IR 1H and 13C NMR spectra and its X-ray structure (see 
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Scheme 1. Synthesis and structure of 1. 

2. Results 
Compound 1 was readily prepared by reaction of the dibromo analogue 2 [2] with 

an excess of potassium iodide in boiling ethanol for 6 h. Its UV spectrum (see Supporting 
Material) showed four strong absorptions in the range 200–354 nm, while its IR spectrum 
showed a strong C=O absorption at 1686 cm–1. The NMR spectra were in agreement with 
expectation and featured a 1H signal at 9.55 ppm for OH as well as a remarkably shielded 
13C signal for C–I at 88.6 ppm. This can be compared with a value of 110 ppm for C–Br in 
compound 2 and results from the well-known heavy atom shielding effect of iodine. 

Crystals of compound 1 as prepared were directly suitable for X-ray diffraction, and 
the resulting molecular structure is shown in Figure 1. This showed the expected high 
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Scheme 1. Synthesis and structure of 1.

2. Results

Compound 1 was readily prepared by reaction of the dibromo analogue 2 [2] with
an excess of potassium iodide in boiling ethanol for 6 h. Its UV spectrum (see Supporting
Material) showed four strong absorptions in the range 200–354 nm, while its IR spectrum
showed a strong C=O absorption at 1686 cm−1. The NMR spectra were in agreement with
expectation and featured a 1H signal at 9.55 ppm for OH as well as a remarkably shielded
13C signal for C–I at 88.6 ppm. This can be compared with a value of 110 ppm for C–Br in
compound 2 and results from the well-known heavy atom shielding effect of iodine.

Crystals of compound 1 as prepared were directly suitable for X-ray diffraction, and
the resulting molecular structure is shown in Figure 1. This showed the expected high
degree of steric congestion around the central six-membered ring, resulting in the ester
groups being almost orthogonal to the plane of the benzene ring.
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degree of steric congestion around the central six-membered ring, resulting in the ester 
groups being almost orthogonal to the plane of the benzene ring. 

 
 

Figure 1. Two views of the molecular structure of 1 showing esters orthogonal to ring (thermal 
ellipsoids at 50% level). Bond lengths C(1)–I(1) 2.096(3), C(4)–I(2) 2.094(3) Å; torsion angles C(5)–
C(6)–C(11)–O(12) –92.6(4), C(2)–C(3)–C(7)–O(8) 109.9(3). 

In the crystal, adjacent molecules had iodine atoms in a similar orientation but with 
alternating positions of the hydroxyl and ester groups, allowing efficient hydrogen bond-
ing (Figure 2, Table 1). 

 
Figure 2. The basic hydrogen bonding pattern. 

Table 1. Hydrogen bonding parameters for 1 (Å, °). 

D—H…A D—H H…A D…A D—H…A 
O(2)–H(2)…O(11) 0.98(3) 1.90(3) 2.778(4) 149(4) 
O(5)–H(5)…O(7) 0.98(2) 1.79(2) 2.746(3) 163(4) 

Overall, the crystal structure consisted of stacks of molecules with the iodine atoms 
aligned and joined by hydrogen bonds alternately at the top and bottom (Figure 3). This 
is a type of structure that has been described before for halogenated dihydroxytereph-
thalate esters. In fact, the solid-state structure of such compounds has been of considerable 
interest ever since the early observation by Hantzsch of different coloured forms of dime-
thyl dichlorodihydroxyterephthalate [3]. A summary of the different structures deter-
mined for such compounds together with the CSD reference codes and literature refer-
ences is shown in Figure 4. 

Figure 1. Two views of the molecular structure of 1 showing esters orthogonal to ring (thermal
ellipsoids at 50% level). Bond lengths C(1)–I(1) 2.096(3), C(4)–I(2) 2.094(3) Å; torsion angles C(5)–C(6)–
C(11)–O(12) −92.6(4), C(2)–C(3)–C(7)–O(8) 109.9(3).

In the crystal, adjacent molecules had iodine atoms in a similar orientation but with
alternating positions of the hydroxyl and ester groups, allowing efficient hydrogen bonding
(Figure 2, Table 1).
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Figure 2. The basic hydrogen bonding pattern.

Table 1. Hydrogen bonding parameters for 1 (Å, ◦).

D—H . . . A D—H H . . . A D . . . A D—H . . . A

O(2)–H(2) . . . O(11) 0.98(3) 1.90(3) 2.778(4) 149(4)
O(5)–H(5) . . . O(7) 0.98(2) 1.79(2) 2.746(3) 163(4)

Overall, the crystal structure consisted of stacks of molecules with the iodine atoms
aligned and joined by hydrogen bonds alternately at the top and bottom (Figure 3). This is
a type of structure that has been described before for halogenated dihydroxyterephthalate
esters. In fact, the solid-state structure of such compounds has been of considerable interest
ever since the early observation by Hantzsch of different coloured forms of dimethyl
dichlorodihydroxyterephthalate [3]. A summary of the different structures determined for
such compounds together with the CSD reference codes and literature references is shown
in Figure 4.

In diethyl dihydroxyterephthalate 3, the molecules are planar and form chains fea-
turing both intra- and intermolecular hydrogen bonding [4]. This is also the case for the
dihydro analogue 4, for which three separate, but essentially identical, structures have been
reported [5–7]. Introduction of a bulky substituent such as aryloxy at the remaining ring
positions removes the intermolecular hydrogen bonding, and compounds 5–8 retain only
the two intramolecular hydrogen bonds [8].
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When we come to ring halogenated derivatives, the situation is considerably more in-
teresting and provides an explanation on a molecular level for Hantzsch’s early observation.
Thus, the yellow form of dimethyl dichlorodihydroxyterephthalate 9 has the molecules
approximately planar and forming chains featuring both intra- and intermolecular hy-
drogen bonding, as for 3 and 4 [9]. There is also a further “pale yellow” form that has
ester groups twisted out of plane by around 40◦, but still retains the same chain structure.
However, Hatzsch’s white form of 9 has the ester groups orthogonal to the ring with no
intramolecular hydrogen bonding, and actually has the same stack structure as we have
found for 1 [9]. A similar structure has also been reported for dimethyl dibromodihy-
droxyterephthalate 10 [11]. When we come to diethyl dibromodihydroterephthalate 2,
the situation is slightly different again with two reports of the stack structure lacking
intramolecular hydrogen bonding [8,12], but also a different structure that has a chain
of molecules in which one ester group is in plane and involved in both intra- and inter-
molecular hydrogen bonding, but the second ester group is orthogonal and not involved in
hydrogen bonding [12].

In summary, the X-ray crystal structure of 1, the first for a dihydroxydiiodoterephtha-
late, has the ester groups orthogonal to the benzene ring and adopts the hydrogen bonded
stack structure also previously described for the related dichloro and dibromo esters 2, 9
and 10.

3. Experimental Section

Melting points were recorded on a Reichert hot-stage microscope (Reichert, Vienna,
Austria) and are uncorrected. IR spectra were recorded on a Perkin-Elmer 1420 instrument
(Perkin-Elmer, Waltham, MA, USA). NMR spectra were obtained for 1H at 300 MHz and for
13C at 75 MHz using a Bruker AV300 instrument (Bruker, Billerica, MA, USA). Spectra were
run at 25 ◦C on solutions in CD3SOCD3 with internal Me4Si as the reference. Chemical
shifts are reported in ppm to high frequency of the reference, and coupling constants J are
in Hz.

Diethyl 2,5-Dihydroxy-3,6-Diiodoterephthalate (1)

A solution of diethyl 3,6-dibromo-2,5-dihydroxyterephthalate 2 [2] (4.0 g, 9.7 mmol)
and potassium iodide (4.83 g, 29.1 mmol) in ethanol (40 mL) was heated under reflux for
6 h. The mixture was hot-filtered, and upon cooling to room temperature, a solid was
formed which was filtered off and washed with ethanol (3 × 15 mL) to give product 1
(2.0 g, 41%) as faintly pink needles, mp 168–170 ◦C (lit. [1] 167 ◦C). UV–Vis (MeCN): λmax
(log e) 354 (3.85), 290 (4.04), 230 (3.97), 200 (4.04); IR (ATR) 1686 (C=O), 1412, 1306, 1273,
1188, 1142, 1009, 860, 829, 737, 681 cm−1; 1H NMR (300 MHz, CD3SOCD3) 9.55 (2H, br s,
OH), 4.30 (4H, q, J 7.1), 1.30 (6H, t, J 7.1); 13C NMR (75 MHz, CD3SOCD3) 165.9 (C=O),
146.9 (C–OH), 131.5 (C–CO2Et), 88.6 (C–I), 61.5 (CH2), 13.9 (CH3).

Crystal data for C12H12I2O6, M = 506.03 g mol−1, colourless plate, crystal dimen-
sions 0.278 × 0.085 × 0.032 mm, orthorhombic, space group Pbca (No. 61), a = 8.2343(2),
b = 18.9496(6), c = 19.3066(6) Å, α = β = γ = 90◦, V = 3012.54(15) Å3, Z = 8, Dcalc = 2.231 g cm−3,
T = 173 K, R1 = 0.0261, Rw2 = 0.0537 for 2594 reflections with I > 2σ(I), and 191 variables.
Data were collected using graphite monochromated Mo Kα radiation λ = 0.71073 Å and
have been deposited at the Cambridge Crystallographic Data Centre as CCDC 2,169,373.
The data can be obtained free of charge from the Cambridge Crystallographic Data Centre
via http://www.ccdc.cam.ac.uk/getstructures. The structure was solved by direct methods
and refined by full-matrix least-squares against F2 (SHELXL, Version 2018/3 [13]).

Supplementary Materials: The following are available online. Figure S1: UV–Vis spectrum of 1;
Figure S2: IR spectrum of 1; Figure S3: 1H NMR spectrum of 1; Figure S4: 13C NMR spectrum of 1.
Cif and check-cif files for 1.

http://www.ccdc.cam.ac.uk/getstructures
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