checkCIF/PLATON report

Structure factors have been supplied for datablock(s) rebe18

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: rebe18

Bond precision: C-C = 0.0060 A Wavelength=1.54178 Cell: a=17.7361(4) b=17.7361(4) c=17.7361(4) alpha=90 beta=90 gamma=90 Temperature: 100 K Calculated Reported Volume 5579.2(4) 5579.2(4)Space group P a −3 P a -3 Hall group -P 2ac 2ab -P 2ac 2ab Moiety formula C18 H15 Br3 Ni P, C8 H20 NC18 H15 Br3 Ni P, C8 H20 N Sum formula C26 H35 Br3 N Ni P C26 H35 Br3 N Ni P Mr 690.90 690.96 Dx,g cm-3 1.645 1.645 Ζ 8 8 Mu (mm-1) 6.678 6.678 F000 2767.9 2768.0 F000′ 2733.87 h,k,lmax 21,21,21 20,21,21 1705 Nref 1703 0.471,0.766 0.560,0.766 Tmin,Tmax Tmin′ 0.427 Correction method= # Reported T Limits: Tmin=0.560 Tmax=0.766 AbsCorr = MULTI-SCAN Data completeness= 0.999 Theta(max) = 68.148 R(reflections) = 0.0398(1475) wR2(reflections) = 0.1030(1703) S = 1.061Npar= 159

Alert level C

PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of N1 Check

Author Response: Central nitrogen atom of a tetraethylammonium cation strongly disordered around a threefold axis.

PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor 2.2 Note

Author Response: No obivous preferred orientation of ADPs visible in packing diagrams. Eventually related with higher disorder perpendicular to the 3-fold axis.

Alert level G

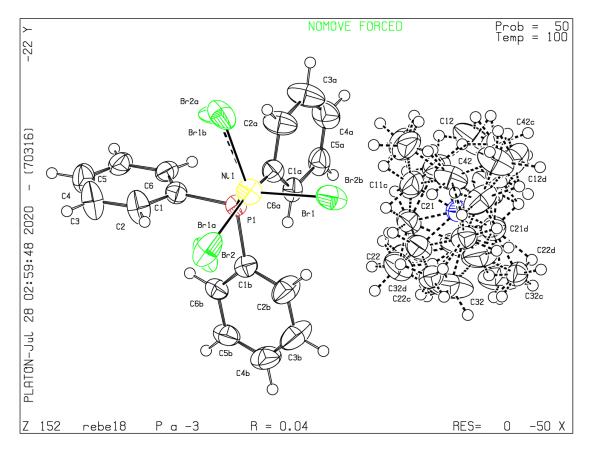
PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite 12 Note

Author Response: The [NEt4]+ cation was found situated on a three-fold axis and was - as to be expected - highly disordered. SADI and RIGU restraints were applied to bond distances and angles in the [NEt4]+ cation. Increased ADPs and high residual charges also indicated a disorder of the bromine atoms. Most likely, a tilting of the NiBr3 moiety relativ to the Ni-P bond, so that P-Ni-Br angles become unequal. Two positions were refined for Br with SADI restraints on the Ni-Br distance, but no further restraints. Occupation factors refined to 0.54:0.46. Refinement of three bromine positions further lowered R1 and wR2 values, but yielded two practically superimposed bromine atoms with slightly different ADPs. We restricted the refinement thus to two bromine positions.

PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms	9 Report
PLAT083_ALERT_2_G SHELXL Second Parameter in WGHT Unusually Large	10.84 Why ?
PLAT176_ALERT_4_G The CIF-Embedded .res File Contains SADI Records	4 Report
PLAT178_ALERT_4_G The CIF-Embedded .res File Contains SIMU Records	1 Report
PLAT187_ALERT_4_G The CIF-Embedded .res File Contains RIGU Records	1 Report
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Br1Ni1 .	8.8 s.u.
PLAT232_ALERT_2_G Hirshfeld Test Diff (M-X) Br2Ni1 .	8.5 s.u.
PLAT300_ALERT_4_G Atom Site Occupancy of C11 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C12 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C21 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C22 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C31 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C32 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C41 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of C42 Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H11A Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H11B Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H12A Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H12B Constrained at	0.3333 Check
PLAT300_ALERT_4_G Atom Site Occupancy of H12C Constrained at	0.3333 Check

PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H21A	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H21B	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H22A	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H22B	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H22C	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H31A	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H31B	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H32A	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H32B	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H32C	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H41A	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H41B	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H42A	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H42B	Constrained	at	0.3333	Check
PLAT300_ALERT_4_G	Atom Site	Occupancy	of	H42C	Constrained	at	0.3333	Check
PLAT301_ALERT_3_G	Main Resid	due Disoro	ler		(Resd 1)	13%	Note
PLAT302_ALERT_4_G	Anion/Solv	vent/Minor-	-Res	sidue	Disorder (Resd 2)	89%	Note
PLAT789_ALERT_4_G	Atoms with	n Negative	_at	com_si	te_disorder_group	#	30	Check
PLAT811_ALERT_5_G	No ADDSYM	Analysis:	Тос	o Many	Excluded Atoms .		!	Info
PLAT860_ALERT_3_G	Number of	Least-Squa	ares	s Rest	raints		121	Note
PLAT909_ALERT_3_G	Percentage	e of I>2sig	g(I)) Data	at Theta(Max) St	11	67%	Note
PLAT912_ALERT_4_G	Missing #	of FCF Ref	Elec	ctions	Above STh/L= 0.6	500	1	Note
PLAT978_ALERT_2_G	Number C-O	C Bonds wit	h I	Positi	ve Residual Densit	у.	4	Info

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 2 ALERT level C = Check. Ensure it is not caused by an omission or oversight 44 ALERT level G = General information/check it is not something unexpected 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 35 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.


Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C* or *E* or *IUCrData*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 16/07/2020; check.def file version of 12/07/2020

