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Abstract: This short note describes the synthesis of compound 6,6′-di-(2′′-thiophenol)-2,2′-bipyridine
from its methyl phenyl sulfane precursor via deprotection of the methyl groups. The product as well
as the intermediate in the synthetic route have been characterized by UV-Vis spectroscopy, 1H- and
13C-NMR spectroscopy, FT-IR spectroscopy, and HR-MS analysis. This work presents a rare example
of tetradentate chelators that bears pyridyl backbones and thiophenol donors for the coordination
with 3d-transition metal cations.
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1. Introduction

[NiFe]-hydrogenases in nature have the ability of catalyzing the protons to hydrogen
(H2) reduction reaction at high rates with a small barrier of activation energy [1,2]. The
active site of [NiFe]-hydrogenases is a bimetallic Ni-Fe cluster, of which the Ni and Fe metal
centers are bridged by two cysteine residue thiolates (Scheme 1) [3–5]. Syntheses of metal
complexes that mimic the structure and function of the active site of [NiFe]-hydrogenases
have long been an important field of bioinorganic chemistry [6,7], and draw even more
attention these days in the context of the development of a hydrogen economy [8]. The
biomimetic Ni and Fe model complexes can help us to understand the catalytic mechanism
of hydrogenases, whilst also inspiring the design of transition metal-based heterogeneous
hydrogen evolution catalysts.
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1. Introduction 
[NiFe]-hydrogenases in nature have the ability of catalyzing the protons to hydrogen 

(H2) reduction reaction at high rates with a small barrier of activation energy [1,2]. The 
active site of [NiFe]-hydrogenases is a bimetallic Ni-Fe cluster, of which the Ni and Fe 
metal centers are bridged by two cysteine residue thiolates (Scheme 1) [3–5]. Syntheses of 
metal complexes that mimic the structure and function of the active site of [NiFe]-hydro-
genases have long been an important field of bioinorganic chemistry [6,7], and draw even 
more attention these days in the context of the development of a hydrogen economy [8]. 
The biomimetic Ni and Fe model complexes can help us to understand the catalytic mech-
anism of hydrogenases, whilst also inspiring the design of transition metal-based hetero-
geneous hydrogen evolution catalysts. 
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Scheme 1. A schematic representation of the active site of [NiFe]-hydrogenase (left) and the molec-
ular structure of a synthetic model (LN2S2NiIIFeII, right) of [NiFe]-hydrogenase [9]. 

Artero et al. recently reported a heterodinuclear Ni-Fe complex (Scheme 1), namely 
LN2S2NiIIFeII, that models the active site of [NiFe]-hydrogenases and catalyzes electrochem-
ical H2 evolution [9–11]. This heterodinuclear complex was developed from the mononu-
clear nickel complex with the bipyridine-bisthiolate ligand, 2,2′-(2,2′-bipyridine-6,6′-
diyl)bis(1,1-diphenylethanethiolate) [12,13]. Despite the successful preparation of 
LN2S2NiIIFeII as a unique and valuable model complex, artificial mimics for the active site 
of [NiFe] hydrogenase, with various structural features, are still very rare. The key chal-
lenge for reproducing the [NiFe]-hydrogenases active site in a synthetic system lies on the 
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Scheme 1. A schematic representation of the active site of [NiFe]-hydrogenase (left) and the molecular
structure of a synthetic model (LN2S2NiIIFeII, right) of [NiFe]-hydrogenase [9].

Artero et al. recently reported a heterodinuclear Ni-Fe complex (Scheme 1), namely
LN2S2NiIIFeII, that models the active site of [NiFe]-hydrogenases and catalyzes electro-
chemical H2 evolution [9–11]. This heterodinuclear complex was developed from the
mononuclear nickel complex with the bipyridine-bisthiolate ligand, 2,2′-(2,2′-bipyridine-
6,6′-diyl)bis(1,1-diphenylethanethiolate) [12,13]. Despite the successful preparation of
LN2S2NiIIFeII as a unique and valuable model complex, artificial mimics for the active
site of [NiFe] hydrogenase, with various structural features, are still very rare. The key
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challenge for reproducing the [NiFe]-hydrogenases active site in a synthetic system lies
on the assembly of multiple thiolate binding sites within one organic ligand and, at the
same time, in a pre-organized manner. Here, we report the synthesis of a novel organic
ligand platform with bisthiophenol chelating donors, which has potential as a chelator of
Ni cations in the application of syntheses of model complexes for [NiFe]-hydrogenases’
active site.

2. Results and Discussion

We designed the compound 6,6′-di-(2′′-thiophenol)-2,2′-bipyridine (2 in Scheme 2) by
integrating the following two design features: (i) a rigid backbone that provides coordinat-
ing sites and regulates the coordination configuration at certain extent; (ii) the availability
of multiple S− donors that mimic the coordination environment around the active site of
[NiFe]-hydrogenase (Scheme 1). To the best of our knowledge, 6,6′-di-(2′′-thiophenol)-2,2′-
bipyridine (2) is the first example of tetradentate ligands that contain both bispyridine and
bisthiophenol chelating moieties. A literature survey returned one hit of compound 2 in a
patent without synthetic details [14] An analogue of 1 with phenanthroline backbone has
been reported before [15].
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The title compound (2) was synthesized in a two-step procedure (Scheme 2) from the
commercially available starting material, 6,6′-dibromo-2,2′-bipyridine. Compound 6,6′-di-
(2′′-methylthiophenyl)-2,2′-bipyridine (1) was prepared under typical Suzuki–Miyaura
coupling conditions using Pd(PPh3)4 as the catalyst and potassium carbonate as a base.
The reaction went well in anaerobic toluene and afforded compound 1 in a yield of
73%. Deprotection of the methyl groups was first performed with NaH and tert-nonyl
mercaptan in DMF at 160 ◦C [16]. The conventional heating condition, however, did not
effectively remove the thioether substituent. Given a relatively long reaction period, TLC
analysis of the reaction product revealed a collection of compounds without distinctive
indication for the formation of 2. The application of a microwave reactor, which allows
elevation of the reaction temperature to 200 ◦C, achieved the target compound 2 in a
reasonable yield (53%).

Compounds 1 and 2 were both characterized by 1H- and 13C-NMR spectroscopy.
The proton NMR spectrum of 1 in CDCl3 shows the signal of methyl groups as a singlet
at 2.44 ppm with the integration of 6H (Figure S1). This characteristic methyl proton
peak disappears in the 1H-NMR spectrum of 2. Instead, a singlet with the integration of
2H emerges at 4.57 ppm (Figure S3) and is assigned as the thiophenol protons. Elemental
analysis was conducted to verify the purity of compounds 1 and 2. A high-resolution
mass spectrometer was also employed to confirm the molecular formula of 1 (Figure S5).
Comparing the FT-IR spectra of 1 and 2 (Figure S6) reveals the S−H stretching bands
at 2506 and 2530 cm−1, which are close to the S−H stretching band of thiophenol
(2545 cm−1) [17].

The UV-Vis spectra of 1 and 2 were recorded in methanol, as displayed in Figure 1.
Both compounds show strong absorbance bands at λmax = 231 and 303 nm, which derive
from the π→ π* electron excitation at the pyridyl and phenyl moieties. The addition of one
equivalent nickel acetate in the methanol solution of 2 results in significant change of the
UV-Vis absorption profile: the emergence of absorbance bands at λmax = 263 and 291 nm.
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The phenomena suggest coordination of Ni(II) ion by the tetradentate compound 2. In
contrast, the UV-Vis spectrum of 1 is not affected by the presence of nickel ion, indicating
weak or no interaction between the compound Ni(II) in solution. Synthesis and isolation of
3d-transition metal complexes, particularly Ni and Fe complexes, with compound 2 as a
ligand are being carried out.
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3. Materials and Methods

All air- and moisture-sensitive experiments were performed under a dry argon at-
mosphere using standard Schlenk techniques. Dry solvents for moisture-sensitive experi-
ments were purchased from commercial sources (water content ≤ 10 ppm) and used as
received without further purification. 6,6′-dibromo-2,2′-bipyridine, 4,4,5,5-tetramethyl-2-(2-
(methylthio)phenyl)-1,3,2-dioxaborolane, 2-methyloctane-2-thiol, and other chemicals for
syntheses were commercially available and used as received. Microwave syntheses were
carried out using an Anton-Parr Monowave 200 microwave reactor (Anton-Parr, Graz, Aus-
tria). Water for syntheses and analysis was purified by Milli-Q technique (18.2 MΩ, Merck,
Darmstadt, Germany). Thin Layer Chromatography analyses were performed on silica gel
coated glass plates with fluorescence indicator UV254. Flash column chromatography was
conducted with silica gel at atmospheric pressure.

1H- and 13C-NMR spectra were recorded on a Bruker (Fällanden, Switzerland) Avance
NEO (600 MHz) spectrometer, operating at a probe temperature of room temperature.
Chemical shifts, δ, are reported in ppm relative to the peak of SiMe4, using 1H chemical
shifts of the residual solvents as references [18]. Electronic absorption spectra were recorded
with a compact OTO Photonics (Hsinchu, Taiwan) UV-Vis spectrometer (SE2030-050-FUV).
High-resolution MS data were obtained using an Agilent (Santa Clara, CA, USA) 1260-6460
Q-TOF mass spectrometer. FT-IR spectra were acquired using the TENSOR II + Hyperion
2000 spectroscopy (Bruker, Ettlingen, Germany). Elemental analysis (C N H S) was per-
formed on Vario EL Cube (Elementar, Langenselbold, Germany).

Synthesis of 6,6′-di-(2′′-methylthiophenyl)-2,2′-bipyridine (1).

4,4,5,5-Tetramethyl-2-(2-(methylthio)phenyl)-1,3,2-dioxaborolane (1.0 g, 4.0 mmol)
was added to a solution of 6,6′-dibromo-2,2′-bipyridine (313 mg, 1.0 mmol) in a mixture
of toluene (7 mL) and EtOH (7 mL). After degassing by Ar, K2CO3 (4.14 g, 30 mmol) and
Pd(PPh3)4 (58 mg, 0.05 mmol) were added to this solution and the mixture was heated by a
microwave reactor to 170 ◦C for 65 min under stirring. The solution was allowed to cool to
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room temperature and the volatile components were removed under vacuum. The residue
was extracted with methylene chloride (50 mL × 3) three times. The combined organic
layers were washed by saturated sodium chloride solution and then dried by anhydrous
sodium sulfate. The solid salt was removed by filtration. Removal of the solvent under
vacuum afforded compound 1 as an orange powder (292 mg. 73%). 1H-NMR (600 MHz,
Chloroform-d) δ 8.61 (dd, J = 7.9, 1.0 Hz, 2H), 7.90 (t, J = 7.8 Hz, 2H), 7.58 (ddd, J = 10.6,
7.5, 1.2 Hz, 4H), 7.43–7.38 (m, 4H), 7.29–7.26 (m, 2H), 2.44 (s, 6H). 13C-NMR (151 MHz,
Chloroform-d) δ 157.59, 155.43, 138.23, 137.45, 130.10, 129.02, 126.29, 124.88, 123.77, 120.11,
77.16, 16.92. ESI-HRMS: m/e calcd for C24H21N2S2 (M + H)+ 401.1146, found 401.1146. Mp:
215–218 ◦C. Anal. Calcd. for 1 (C24H20N2S2): C, 71.97; H, 5.03; N, 6.99; S, 16.01. Found: C,
71.65; H, 5.05; N, 6.73; S, 15.77.

Synthesis of 6,6′-di-(2′′-thiophenol)-2,2′-bipyridine (2).

2-Methyloctane-2-thiol (640 mg, 4.0 mmol) was added to a solution of NaH (96 mg,
4.0 mmol) in anhydrous DMF (13 mL). Compound 1 (200 mg, 0.5 mmol) was added to
this solution and the mixture was stirred under an Ar atmosphere for about 10 min, until
the gas bubbling ceased. The mixture was then transferred to a glass tube (designed
for microwave reaction) and heated by a microwave reactor to 200 ◦C for 75 min under
stirring. The solution was allowed to cool to room temperature, and then diluted
hydrochloric acid (25 mL) was slowly dropped into it. The orange precipitate was
collected by filtration and purified by column chromatography over silica using CH2Cl2
as an eluent. The pure product was obtained as an orange powder (98 mg, 53%). 1H-
NMR (600 MHz, Chloroform-d) δ 8.64 (dd, J = 7.8, 1.0 Hz, 2H), 7.95 (t, J = 7.8 Hz, 2H),
7.64–7.58 (m, 4H), 7.48–7.43 (m, 2H), 7.29–7.26 (m, 4H), 4.57 (s, 2H). 13C-NMR (151 MHz,
Chloroform-d) δ 138.18, 137.92, 132.21, 131.37, 130.41, 129.01, 125.73, 123.55, 120.03, 77.16.
Mp: 179–182 ◦C. Anal. Calcd. for 2· (C22H16N2S2): C, 70.94; H, 4.33; N, 7.52; S, 17.21.
Anal. Calcd. for 2·0.6H2O (C22H17.2N2O0.6S2): C, 68.94; H, 4.52; N, 7.31; S, 16.73. Found:
C, 68.64; H, 4.35; N, 6.87; S, 16.87.

4. Conclusions

Compounds di-(2′′-methylthiophenyl)-2,2′-bipyridine (1) and 6,6′-di-(2′′-thiophenol)-
2,2′-bipyridine (2) have been prepared and characterized. The deprotection of methyl
groups of 1 with tert-nonyl mercaptan was achieved in DMF using a microwave reactor
at 200 ◦C. The thiophenol bipyridine compound 2 might be used as a chelator for the
Ni cation.

Supplementary Materials: The following supporting information can be downloaded: NMR spectra
and HRMS analysis. Figure S1. 1H-NMR spectrum of compound 1 in CDCl3. Figure S2. 13C{1H} NMR
spectrum of compound 1 in CDCl3. Figure S3. 1H-NMR spectrum of compound 2 in CDCl3. Figure S4.
13C{1H} NMR spectrum of compound 2 in CDCl3. Figure S5. HRMS spectrum of compound 1.
Figure S6. FT-IR spectra of compounds 1 (blue) and 2 (red) as KBr pellets.
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