

Communication Crystal Structure of a Chiral Sec-Amine, 4-Chloro-N-(1-(pyridin-2-yl)ethyl)aniline

Adesola A. Adeleke ^{1,2} and Bernard Omondi ^{1,*}

- ¹ School of Chemistry and Physics, University of Kwazulu-Natal, Pietermaritzburg Campus, Private Bag X01, Scottsville 3209, South Africa; 217080311@stu.ukzn.ac.za
- ² Department of Chemical Sciences, Olabisi Onabanjo University, Ago-Iwoye, P. M. B. 2002, Ogun State 120107, Nigeria
- * Correspondence: owaga@ukzn.ac.za

Abstract: In this communication, we present the crystal structure of a secondary amine: 4-chloro-*N*-(1-(pyridin-2-yl)ethyl)aniline (L_b) obtained from a stepwise reduction of an imine, (*E*)-*N*-(4chlorophenyl)-1-(pyridin-2-yl)ethan-1-imine (L_a) with sodium borohydride. The structure was characterized by FT-IR, ¹H and ¹³C NMR, Mass Spectroscopy and X-ray diffraction.

Keywords: NaBH₄; chiral; sec-amine; reductive amination; crystal structure; imines

1. Introduction

Schiff bases are a significant ligand in synthetic chemistry due to their numerous applications [1-3]. The capacity of the Schiff bases C=N double bond to be reduced to a C-N single bond to generate their corresponding secondary amine is one of their most intriguing properties. Sec-amines are crucial synthesis intermediates in the pharmaceutical [4], polymer [5] and agricultural [6] sectors. Most sec-amines can be made either by direct reductive amination of carbonyl compounds or via a stepwise reaction that starts with the synthesis of imines and then reduces them to amines. The stepwise procedure in reducing imines to amines is a commonly used approach to avoid overalkylation and direct reduction of carbonyl compounds to the appropriate alcohol. It requires the use of various metal hydrides reagents such as Bu₂SnClH [7], LiAlH₄ [8], (g-C₅H₅)₂MoH₂ [9], CaH_2/ZnX_2 [10] and NaBH₄ [11]. Most of these metal hydrides have chemoselective limitations, low yields and are expensive. As a result, most studies utilize sodium borohydrides [12] or its modified compounds such as Na(CH₃COO)₃BH [13], NaBH₃CN [14], $NaBH(OAc)_3$ [15] and $Zn(BH_4)_2$ [16] to reduce imines to sec-amines. The choice of sodium borohydride is related to it being a highly selective reducing agent that won't attack other functional groups in a molecule. As such, sodium borohydride (NaBH₄) was employed in this study to reduce (E)-N-(4-chlorophenyl)-1-(pyridin-2-yl)ethan-1-imine Schiff base to the title sec-amine.

2. Results

The reduction of imine (*E*)-*N*-(4-chlorophenyl)-1-(pyridin-2-yl)ethan-1-imine (L_a) with NaBH₄ in methanol solvent led to the formation of a yellow crystal *sec*-amine of 4-chloro-*N*-(1-(pyridin-2-yl)ethyl)aniline (L_b). The known compound [17] was obtained in a simple stepwise reductive process with a high yield. The formation of the compound was revealed by the appearance of a new quartet in the ¹H NMR spectrum of L_b (Figure S1), which was attributed to the proton attaching to the methyl group at δ 4.57 ppm. The ¹³C NMR spectrum (Figure S2) further confirmed the formation of L_b. In the FT-IR spectrum of the title amine (Figure S3), the appearance of strong absorption bands at 3264 cm⁻¹ assigned to the -NH group clearly shows the successful reduction of the imine C=N double bond to amine C-N single bond. The peak at 1339, 1286 and 1235 cm⁻¹ corresponding to the

Citation: Adeleke, A.A.; Omondi, B. Crystal Structure of a Chiral Sec-Amine, 4-Chloro-N-(1-(pyridin-2yl)ethyl)aniline. *Molbank* 2022, 2022, M1335. https://doi.org/10.3390/ M1335

Academic Editor: R. Alan Aitken

Received: 1 January 2022 Accepted: 7 February 2022 Published: 9 February 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). vibrational signals of the C-N single bond also confirm the presence of the new C-N single bond. The peak at 741 cm⁻¹ can be assigned to the C-Cl vibration signal.

The molecular structure of L_b was further confirmed by X-ray crystallography. L_b was crystallized from methanol to obtain yellow needle-like crystals suitable for X-ray crystallography. The crystal structure of L_b (Figure 1) revealed that it belongs to the monoclinic system with the space group P21/c. The plane of the pyridinyl moiety is connected to that of the phenyl ring by an NH-CH-CH₃ linker with a torsional angle of 63.0 (2)° between them. The bond length of the amino N1-C4 (1.38 (2) Å) and the phenyl ring C, as well as the bond length of the amino N1-C5 (1.45 (2) Å) (Table 1) and the chiral center, are both close to the average C-N single bond length [18,19]. The chiral *sec*-amine L_b has a distorted tetrahedral structure, and its geometrical parameters (Table 1) are similar to the literature report [20]. The packing structure of L_b (Figure 2a) also showed strong H-N····· Cl and N_{py}····· H-N intermolecular hydrogen bonds were also seen.

Figure 1. The ORTEP diagrams of L_b with the thermal ellipsoids drawn at the 50%. Atoms color: (a) blue = nitrogen, (b) pink = hydrogen, (c) green = chlorine, (d) grey = carbon.

Tab	le 1.	. Selectec	l geometric	parame	ters for	L _b .
-----	-------	------------	-------------	--------	----------	------------------

Atom	Length/Å	Atom		Angle/°	
N(1)-C(5)	1.45 (2)	C(12)-C(5)-N(1)		108.34 (12)	
H(6)-C(5)	1.00	H(6)-C(5)-C(6)		108.43	
C(12)-C(5)	1.53 (2)	H(6)-C(5)-N(1)		108.43	
C(6)-C(5)	1.53 (2)	H(6)-C(5)-C(12)	108.43	
C(1)-Cl(1)	1.76 (2)	C(6)-C(5)-C(12)		110.18 (12)	
		N(1)-C(5	5)-C(6)	112.93 (12)	
D-H A	d(D-H)/Å	d(H A)/Å	d(DA)/Å	$<$ D-H-A/ $^{\circ}$	
N(1)-H(1) N(21)	0.88	2.25	3.08 (17)	158.3	
C(2)-H(2) Cl(12)	0.95	2.97	3.88 (15)	160.5	
C(10)-H(10) Cl(13)	0.95	2.91	3.75 (15)	148.3	
C(13)-H(13) Cl(14)	0.95	2.99	3.91 (16)	163.8	
¹ 2-x, -y, 1-z; ² 1-x, -y, 2-z; ³ +x, $\frac{1}{2}$ -y, $-\frac{1}{2}$ + z; ⁴ 1 + x, +y, +z					

Figure 2. (a) The view of packing the diagram of L_b molecules along the b axis. (b) A nitrogen-bonded dimer structure of L_b formed via intermolecular H-N·····N nitrogen bonds. Atoms color: (a) blue = nitrogen, (b) pink = hydrogen, (c) green = chlorine, (d) grey = carbon.

3. Materials and Methods

Methanol 99.5% (Aldrich, St. Louis, MO, USA), ethyl acetate 99.8% (Aldrich, St. Louis, MO, USA), 2-pyridinecarboxaldehyde 99% (Aldrich, St. Louis, MO, USA), 4-chloroaniline 99% (Aldrich, St. Louis, MO, USA) and NaBH₄ \geq 98% (Aldrich, St. Louis, MO, USA) were purchased from local suppliers. All chemicals were of analytical grade and were used as they were given to us. On a BRUKER 400 MHz spectrometer (Karlsruh, German), ¹H NMR and ¹³C NMR spectra in CDCl₃ were recorded. Chemical shift values in CDCl₃ are expressed in parts per million (ppm) in relation to the solvent residual peaks; 7.26 ppm for ¹H NMR and 77.16 ppm for ¹³C NMR. In ¹H NMR spectrum, the splitting pattern is designated as s for singlet, d for doublet, m for multiplet and *J* for joint (the coupling constant is given in Hertz). The infrared spectrum was recorded using a PerkinElmer Spectrum 100 FT-IR spectrometer (Waltham, MA, USA), and the data were reported as percentage transmittances at the respective wavenumbers (cm⁻¹), between 4000 and 650 cm⁻¹. Only molecular ions (M+) and major fragmentation peaks were reported in the mass spectrum, with intensities expressed as percentages of the base peak, using the Shimadzu LCMS-2020 instrument (Kyoto, Japan).

3.1. Synthesis of 4-chloro-N-(1-(pyridin-2-yl)ethyl)aniline La

A known ligand (*E*)-*N*-(4-chlorophenyl)-1-(pyridin-2-yl)ethan-1-imine (L_a) [21] was first synthesized using methods similar to our earlier reports [22,23]. Afterward, L_a was reduced to a secondary ligand 4-chloro-*N*-(1-(pyridin-2-yl)ethyl)aniline (L_b) (Scheme 1) using a modified method from the literature [24].

Scheme 1. Synthesis of the secondary amine (L_b) from imine (L_a).

Synthesis of the secondary amine L_b : The yellow (*E*)-*N*-(4-chlorophenyl)-1-(pyridin-2yl)ethan-1-imine, La (1.15 g, 5 mmol) was dissolved in methanol (100 mL) with vigorous stirring and NaBH₄ (0.19 g, 5 mmol) was added gradually within 15 min until the solution became colorless. The resulting solution was further stirred for another 2 h at room temperature. Afterward, the methanol was removed in vacuo. The residue was dissolved in Ethyl acetate washed with cold water (3 \times 100 mL). The Ethyl acetate was dried with MgSO₄, filtered and the solvent removed in vacuo to afford an oil product. The resultant yellow oil was heated in a small amount of methanol and allowed to slowly evaporate at room temperature, yielding a crystalline product that was recrystallized from methanol. M.p. 105 °C [17], Yield: 0.91 g, 78%, ¹H-NMR (400 MHz, CDCl₃, δ ppm): 8.56 (d, *J* = 4.0 Hz, 1H, Hd-py), 7.61 (dd, J = 8.0 Hz, J = 7.9 Hz, 1H, Hb-py), 7.30 (d, J = 7.9 Hz, 1H, Ha-py), 7.15 (dd, I = 8.0 Hz, I = 4.0 Hz, 1H, Hc-py), 7.09 (d, I = 8.8 Hz, 1H, Hi or Hj), 7.05 (d, I = 8.8 Hz)1H, Hi or Hj), 6.60 (d, J = 8.9 Hz, 1H, Hh or Hk), 6.48 (d, J = 8.9 Hz, 1H, Hh or Hk), 4.57 (q, J = 6.7 Hz, 1H, He-CH), 1.53 (d, J = 6.7 Hz, 3H, Hf-CH₃). ¹³C-NMR (100 MHz, CDCl₃, 25 °C): δ = 149.34 (C5-py), 145.77 (C8-C₆H₄), 145.10 (C1-py), 129.23 (C11-C₆H₄), 129.11 (C12-C₆H₄), 123.29 (C3-py), 122.29 (C4-py), 122.14 (C13-C₆H₄), 120.54 (C2-py), 116.35 (C10-C₆H₄), 114.67 (C9- C₆H₄), 54.87 (C7-CH), 23.17 (C6-CH₃). FT-IR (cm⁻¹): 3264, 3052, 1598, 1339, 1286, 1235, 743.

3.2. X-ray Crystallography

A Bruker Apex Duo diffractometer with an Oxford Instruments Cryojet running at 100 (2) K and an Incoatec micro source working at 30 W power was used to evaluate and collect data of L_b . The data were collected with Mo K α (λ = 0.71073 Å) radiation at a crystal-to-detector distance of 50 mm using omega and phi scans. The data were reduced with the program SAINT [25] using outlier rejection, scan speed scaling, as well as standard Lorentz and polarization correction factors. A SADABS [26] semi-empirical multi-scan absorption correction was applied to the data. The structure of the ligand L_b was solved by the direct method using the SHELXS [27] program and refined. The visual crystal structure information was performed using ORTEP-3 [28], program. Non-hydrogen atoms were first refined isotropically and then by anisotropic refinement with a full-matrix least-squares method based on F^2 using SHELXL [29]. All hydrogen atoms were positioned geometrically, allowed to ride on their parent atoms and refined isotropically. The crystallographic data and structure refinement parameters of the *sec*-amine L_b are given in Table 2.

Table 2. Crystal data and structure refinement for L_b.

	L _b
Chemical formula	$C_{13}H_{13}CIN_2$
Formula Weight	232.70
Crystal system	Monoclinic
Space group	P 21/c
a (Å)	9.4547 (5)
b (Å)	16.2237 (8)

	L _b
c (Å)	7.9004 (4)
α (°)	90
β (°)	104.169 (3)
γ (°)	90
V (Å ³)	1174.98 (10)
Z	4
$\rho_{calc} (g \text{ cm}^{-3})$	1.315
μ (mm ⁻¹)	0.298
F (000)	488.0
Crystal size (mm ³)	$0.660\times0.280\times0.220$
θ range for data collection (°)	2.222 to 26.718
Index ranges	$\begin{array}{l} -11 \leq h \leq 11, \\ -19 \leq k \leq 20, \\ -9 \leq l \leq 9 \end{array}$
Reflections collected	16177
Independent reflections	2480 [R (int) = 0.0341]
Completeness to theta = 25.242	99.9%
Data/restraints/parameters	2480/0/146
Goodness-of-fit on F ²	1.101
R indices [I > 2sigma (I)]	$R_1 = 0.0332, wR_2 = 0.0800$
R indices (all data)	$R_1 = 0.0375, wR_2 = 0.0829$
Largest diff. peak and hole (e Å ⁻³)	0.433 and -0.467

Table 2. Cont.

4. Conclusions

In a two-step approach, we were able to produce a *sec*-amine with halogen functionality. Because of its high chemo-selectivity, the use of an equimolar amount of sodium borohydride in methanol aids in the effective synthesis of the chlorine-containing *sec*-amine. The *sec*-amine possesses a chiral center and forms a distorted tetrahedral structure with the chiral center.

Supplementary Materials: The following are available online. Figure S1: 1H NMR spectrum of Lb, Figure S2: 13C NMR spectrum of Lb, Figure S3: IR spectrum of Lb and Mass Spec. spectrum of Lb.

Author Contributions: B.O. conceived and designed the structure; A.A.A. completed the synthesis, crystal growth, characterization and manuscript drafting; B.O. revised the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Research Foundation of South Africa (Grant number: 119342).

Data Availability Statement: CCDC No. 2131918 contains the supplementary crystallographic data for the title compound. These data can be obtained free of charge via http://www.ccdc.cam. ac.uk/conts/retrieving.html (accessed on 31 November 2021) or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)1223-336-033 or via email: deposit@ccdc.cam.ac.uk.

Acknowledgments: The authors are grateful to the National Research Foundation and the University of KwaZulu-Natal for their financial support and for providing the Lab where this research was conducted.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Uddin, M.N.; Ahmed, S.S.; Alam, S.M.R. Biomedical applications of Schiff base metal complexes. J. Coord. Chem. 2020, 73, 3109–3149. [CrossRef]
- 2. Kajal, A.; Bala, S.; Kamboj, S.; Sharma, N.; Saini, V. Schiff Bases: A Versatile Pharmacophore. J. Catal. 2013, 2013, 1–14. [CrossRef]
- Ebosie, N.P.; Ogwuegbu, M.O.C.; Onyedika, G.O.; Onwumere, F.C. Biological and analytical applications of Schiff base metal complexes derived from salicylidene-4-aminoantipyrine and its derivatives: A review. *J. Iran. Chem. Soc.* 2021, *18*, 3145–3175. [CrossRef]
- 4. Patil, M.D.; Grogan, G.; Bommarius, A.S.; Yun, H. Oxidoreductase-Catalyzed Synthesis of Chiral Amines. *ACS Catal.* 2018, *8*, 10985–11015. [CrossRef]
- 5. Froidevaux, V.; Negrell, C.; Caillol, S.; Pascault, J.-P.; Boutevin, B. Biobased Amines: From Synthesis to Polymers; Present and Future. *Chem. Rev.* **2016**, *116*, 14181–14224.
- Xu, S.; Zeng, X.; Dai, S.; Wang, J.; Chen, Y.; Song, J.; Shi, Y.; Cheng, X.; Liao, S.; Zhao, Z. Turpentine Derived Secondary Amines for Sustainable Crop Protection: Synthesis, Activity Evaluation and QSAR Study. J. Agric. Food Chem. 2020, 68, 11829–11838. [CrossRef] [PubMed]
- 7. Kato, H.; Shibata, I.; Yasaka, Y.; Tsunoi, S.; Yasuda, M.; Baba, A. The Reductive Amination of Aldehydes and Ketones by Catalytic Use of Dibutylchlorotin Hydride Complex. *Chem. Commun.* **2006**, *40*, 4189–4191. [CrossRef]
- 8. Elsen, H.; Färber, C.; Ballmann, G.; Harder, S. LiAlH₄: From Stoichiometric Reduction to Imine Hydrogenation Catalysis. *Angew. Chem.* **2018**, 130, 7274–7278. [CrossRef]
- Ito, T.; Yamaguchi, Y. Syntheses and Reactivity of Group 6 Metallocene-Type Complexes Based on Bis(η-cyclopentadienyl) molybdenum and -tungsten Fragments. J. Synth. Org. Chem. Jpn. 2004, 62, 214–225. [CrossRef]
- 10. Aida, T.; Kuboki, N.; Kato, K.; Uchikawa, W.; Matsuno, C.; Okamoto, S. Use of CaH₂ as a reductive hydride source: Reduction of ketones and imines with CaH₂/ZnX₂ in the presence of a Lewis acid. *Tetrahedron Lett.* **2005**, *46*, 1667–1669. [CrossRef]
- 11. Billman, J.H.; Diesing, A.C. Reduction of Schiff Bases with Sodium Borohydride. J. Org. Chem. 1957, 22, 1068–1070. [CrossRef]
- 12. Tabane, T.H.; Singh, G.S. A Simple Reduction of Imines to Biologically Important Secondary Amines Using Sodium Borohydride/Alumina in Solid-Phase. *Proc. Natl. Acad. Sci. India Sect. A Phys. Sci.* 2014, 84, 517–521. [CrossRef]
- 13. Abdel-Magid, A.F.; Carson, K.G.; Harris, B.D.; Maryanoff, C.A.; Shah, R.D. Reductive Amination of Aldehydes and Ketones with Sodium Triacetoxyborohydride. Studies on Direct and Indirect Reductive Amination Procedures 1. *J. Org. Chem.* **1996**, *61*, 3849–3862. [CrossRef] [PubMed]
- 14. Juru, A.U.; Cai, Z.; Jan, A.; Hargrove, A.E. Template-guided selection of RNA ligands using imine-based dynamic combinatorial chemistry. *Chem. Commun.* **2020**, *56*, 3555–3558. [CrossRef] [PubMed]
- 15. Gutierrez, C.D.; Bavetsias, V.; McDonald, E. TiCl(OⁱPr)₃ and NaBH(OAc)₃: An efficient reagent combination for the reductive amination of aldehydes by electron-deficient amines. *Tetrahedron Lett.* **2005**, *46*, 3595–3597. [CrossRef]
- 16. Gama, I.L. Zinc Borohydride. Synlett 2012, 23, 642–643. [CrossRef]
- 17. Berger, L.; Corraz, A.J. 5-(Pyridylalkyl)-Pyridoindole Derivatives. U.S. Patent No. 3,522,262, 28 July 1970.
- 18. Dey, S.; Panda, S.; Ghosh, P.; Lahiri, G.K. Electronically Triggered Switchable Binding Modes of the C-Organonitroso (ArNO) Moiety on the {Ru(acac)₂} Platform. *Inorg. Chem.* **2019**, *58*, 1627–1637. [CrossRef]
- 19. Xu, J.; Wang, L.; Liang, G.; Bai, Z.; Wang, L.; Xu, W.; Shen, X. Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties. *Bull. Korean Chem. Soc.* **2010**, *31*, 2531–2536. [CrossRef]
- 20. Biçer, A.; Kaya, R.; Yakalı, G.; Gültekin, M.S.; Cin, G.T.; Gülçin, I. Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes. *J. Mol. Struct.* **2020**, *1204*, 127453. [CrossRef]
- 21. Fedushkin, I.L.; Nikipelov, A.S.; Morozov, A.G.; Skatova, A.A.; Cherkasov, A.V.; Abakumov, G.A. Addition of Alkynes to a Gallium Bis-Amido Complex: Imitation of Transition-Metal-Based Catalytic Systems. *Chem. Eur. J.* 2012, *18*, 255–266. [CrossRef]
- Adeleke, A.A.; Zamisa, S.J.; Omondi, B. Crystal structure of 4-(1-phenylimidazo[1,5-a]pyridin-3-yl)benzoic acid (C₂₀H₁₄N₂O₂). Z. Für Krist. New Cryst. Struct. 2019, 234, 1157–1159.
- 23. Adeleke, A.A.; Zamisa, S.J.; Omondi, B. Crystal structure of dichlorido-bis((E)-2-((pyridin-4-ylmethylene)amino)phenol)zinc(II), C₂₄H₂₀Cl₂N₄O₂Zn. Z. Für Krist. New Cryst. Struct. **2020**, 235, 625–628. [CrossRef]
- 24. Hamadi, H.; Javadi, S. One-pot Reductive Amination of Carbonyl Compounds with NaBH₄-B(OSO₃H)₃/SiO₂ in Acetonitrile and in Solvent-free Condition. *J. Chem. Sci.* **2017**, *129*, 75–80. [CrossRef]
- 25. SAINT, B. (V7.68A), Data Reduction Software; Bruker AXS Inc.: Madison, WI, USA, 2009.
- 26. Bruker, A. (V7.60A), Saint and SADABS; Bruker AXS Inc.: Madison, WI, USA, 2009.
- 27. Sheldrick, G.M. Crystal structure solution with ShelXT. Acta Crystallogr. A 2015, 71, 3–8. [CrossRef] [PubMed]
- 28. Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [CrossRef]
- 29. Sheldrick, G.M. Crystal structure refinement with SHELXL. *Acta Crystallogr. Sect. C Struct. Chem.* **2015**, *71*, 3–8. [CrossRef] [PubMed]