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Abstract: The reaction of 4,5-dichloro-1,2,3-dithiazolium chloride with 2-(phenylsulfonyl)acetonitrile (1
equiv) in the presence of pyridine (2 equiv) gave S-(3-chloro-5-cyanoisothiazol-4-yl)benzenesulfonothioate
and (Z)-2-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)-2-(phenylsulfonyl)acetonitrile in 19% and 23% yield,
respectively. The compounds were fully characterized and the mechanistic rationale is proposed for the
formation of the benzensulfonate.
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1. Introduction

Monocyclic 1,2,3-dithiazoles are sulfur-rich heterocycles that act as fungicides [1–3],
antibacterials [4–6], antivirals [7,8] or anticancer agents [9–11]. Moreover, 1,2,3-dithiazolyls
are potential organic magnets and/or conductors [12,13]. The field of monocyclic 1,2,3-
dithiazoles took off over 35 years ago with the preparation of 4,5-dichloro-1,2,3-dithiazolium
chloride 1 (aka Appel’s salt, Scheme 1) [14], which has been used extensively for the
preparation of many neutral 5H-1,2,3-dithiazoles 2 [15]. The chemistry and applications of
1,2,3-dithiazoles have been reviewed [16–19].
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Scheme 1. Structure of Appel’s salt 1 and its neutral 5H-1,2,3-dithiazoles 2.

2. Results and Discussion

Recently, we investigated the biological activity of (5H-1,2,3-dithiazol-5-ylidene)-2-
acetonitriles and required access to analogues that can be prepared from the condensation of
Appel’s salt 1 with active methylenes [14,20,21]. While preparations for ylidene-acetonitriles
3–7 [14,20–23] and their derivatives 8–12 [24] are reported and the compounds are fully char-
acterized, little is known about the only sulfone analogue 13 (Scheme 2). This compound
was reported by Rees in 1992, quoting a low yield (exact number not reported) [25], but the
reaction conditions or any characterization data of the product were not reported. We there-
fore repeated this synthesis to obtain and characterize the desired product 13. Interestingly,
the carbonyl-containing (5H-1,2,3-dithiazol-5-ylidene)-2-acetonitriles 4–7 were assigned as
the Z isomers due to stabilizing “non-bonding” interactions between the carbonyl oxygen
and the dithiazole [26].
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the presence of a single chlorine. 13C NMR spectroscopy showed the presence of three CH 
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complete spectra), while a correct elemental analysis (CHN) was obtained for the molec-

ular formula C10H5ClN2O2S3. Structural support was also provided by single-crystal X-ray 

diffraction studies (Figure 1).  

Scheme 2. Synthesis of dithiazole ylidenes.

The reaction of Appel’s salt 1 with 2-(phenylsulfonyl)acetonitrile (1 equiv) in DCM,
for 1 h, followed by the addition of pyridine (2 equiv) and further stirring for 2 h gave
two main products, the colorless S-(3-chloro-5-cyanoisothiazol-4-yl)benzenesulfonothioate
(14) in 19% yield and the yellow colored (Z)-2-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)-2-
(phenylsulfonyl)acetonitrile (13) in 23% yield (Scheme 3).

Molbank 2022, 2022, x FOR PEER REVIEW 2 of 7 
 

uct 13. Interestingly, the carbonyl-containing (5H-1,2,3-dithiazol-5-ylidene)-2-acetonitriles 

4–7 were assigned as the Z isomers due to stabilizing “non-bonding” interactions between 

the carbonyl oxygen and the dithiazole [26]. 

 

Scheme 2. Synthesis of dithiazole ylidenes. 

The reaction of Appel’s salt 1 with 2-(phenylsulfonyl)acetonitrile (1 equiv) in DCM, 

for 1 h, followed by the addition of pyridine (2 equiv) and further stirring for 2 h gave two 

main products, the colorless S-(3-chloro-5-cyanoisothiazol-4-yl)benzenesulfonothioate 

(14) in 19% yield and the yellow colored (Z)-2-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)-2-

(phenylsulfonyl)acetonitrile (13) in 23% yield (Scheme 3). 

 

Scheme 3. Reaction of Appel’s salt 1 with 2-(phenylsulfonyl)acetonitrile. 

Product 14 was isolated as colorless needles, m.p. 146–147 °C (from c-hexane). FTIR 

spectroscopy showed a cyano ν(C≡N) stretch at 2236 cm−1 along with sulfone ν(S=O) 

stretches at 1335 and 1148 cm−1, while mass spectrometry revealed a molecular ion [M + 

Na+] peak of m/z 339 (100%) along with a [M + Na+ +2] peak at 341 (45%), which supported 

the presence of a single chlorine. 13C NMR spectroscopy showed the presence of three CH 

resonances and five quaternary carbon resonances (see Supplementary Materials for the 

complete spectra), while a correct elemental analysis (CHN) was obtained for the molec-

ular formula C10H5ClN2O2S3. Structural support was also provided by single-crystal X-ray 

diffraction studies (Figure 1).  

Scheme 3. Reaction of Appel’s salt 1 with 2-(phenylsulfonyl)acetonitrile.

Product 14 was isolated as colorless needles, m.p. 146–147 ◦C (from c-hexane). FTIR
spectroscopy showed a cyano ν(C≡N) stretch at 2236 cm−1 along with sulfone ν(S=O)
stretches at 1335 and 1148 cm−1, while mass spectrometry revealed a molecular ion
[M + Na+] peak of m/z 339 (100%) along with a [M + Na+ +2] peak at 341 (45%), which
supported the presence of a single chlorine. 13C NMR spectroscopy showed the presence of
three CH resonances and five quaternary carbon resonances (see Supplementary Materials
for the complete spectra), while a correct elemental analysis (CHN) was obtained for the
molecular formula C10H5ClN2O2S3. Structural support was also provided by single-crystal
X-ray diffraction studies (Figure 1).

Product 13 was isolated as yellow needles, m.p. 181–183 ◦C (from c-hexane). UV–vis
spectroscopy supports an intact dithiazole ring (λmax 433 nm, log ε 4.26). FTIR spectroscopy
showed a cyano ν(C≡N) stretch at 2197 cm−1 along with sulfone ν(S=O) stretches at 1315
and 1144 cm−1, while mass spectrometry revealed a molecular ion [M + Na+] peak of m/z
339 (100%) along with a [M + Na+ +2] peak at 341 (44%) that supported the presence of
a single chlorine. 13C-NMR spectroscopy showed the presence of three CH resonances
and five quaternary carbon resonances (see Supplementary Materials for the complete
spectra), while a correct elemental analysis (CHN) was obtained for the molecular formula
C10H5ClN2O2S3. We tentatively assigned the alkene geometry as Z owing to steric and elec-
tronic repulsion between the C-4 chloride and the sulfonyl group, while a “non-bonding”
interaction between the sulfonyl oxygen and the dithiazole S1 is also possible [26].
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Figure 1. Geometry of S-(3-chloro-5-cyanoisothiazol-4-yl)benzenesulfonothioate (14) in the crystal;
crystallographic atom numbering. Thermal ellipsoids at 50% probability.

The formation of isothiazole 14, which is a structural isomer of ylidene 13, is mech-
anistically interesting. The conversion of (5H-1,2,3-dithiazol-5-ylidene)-2-acetonitriles to
isothiazoles occurs in the presence of catalytic chloride [20] or anhydrous HCl or HBr [24],
while isothiazoles can also be formed from the reaction of Appel’s salt 1 with enam-
ines [21,27,28]. Tentatively, the reaction herein proceeds via the thiophilic attack of chloride
at the S-1 position of dithiazole 13 to form the ring-opened disulfide 15 (Scheme 4). Rotation
of the double bond in disulfide 15 enabled by resonance can give the more stable E alkene
16, which can then add chloride to the nitrile and cyclize onto sulfur to give isothiazole
17 with elimination of ‘SCl’. While isothiazole 17 was not observed, we propose that once
formed it rapidly reacted its C-4 position with the electrophilic sulfur of either disulfide 15
or 16 to give intermediate 18. Subsequent attack by chloride on the disulfide group can lead
to the stepwise migration of the phenylsulfone unit onto the sulfur via the spirocycle 19
and the formation of isothiazole 14. A few examples of such migrations leading to benzene-
sulfonothioates have been reported and include a thermal rearrangement of aziridines [29],
a chlorotropic rearrangement [30] and a photochemical reaction of diphenyl sulfone [31].

Molbank 2022, 2022, x FOR PEER REVIEW 4 of 7 
 

 

Scheme 4. Mechanistic rationale of the formation of isothiazole 14. 

3. Materials and Methods 

The reaction mixture was monitored by TLC using commercial glass-backed thin-

layer chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed 

under UV light at 254 and 365 nm. The melting point was determined using a PolyTherm-

A, Wagner & Munz, Kofler—Hotstage Microscope apparatus (Wagner & Munz, Munich, 

Germany). The solvent used for recrystallization is indicated after the melting point. The 

UV–vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotom-

eter (Perkin-Elmer, Waltham, MA, USA) and inflections are identified by the abbreviation 

“inf”. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer 

(Shimadzu, Kyoto, Japan) with Pike Miracle Ge ATR accessory (Pike Miracle, Madison, 

WI, USA) and strong, medium and weak peaks are represented by s, m and w, respec-

tively. 1H and 13C NMR spectra were recorded on a Bruker Avance 500 machine at 500 and 

125 MHz, respectively, (Bruker, Billerica, MA, USA). Deuterated solvents were used for 

homonuclear lock and the signals are referenced to the deuterated solvent peaks. Attached 

proton test (APT) NMR studies were used for the assignment of the 13C peaks as CH3, CH2, 

CH and Cq (quaternary). The matrix-assisted laser desorption/ionization-time of flight 

(MALDI-TOF) mass spectrum (+ve mode) was recorded on a Bruker Autoflex III Smart-

beam instrument (Bruker). 4,5-Dichloro-1,2,3-dithiazolium chloride (1) was prepared ac-

cording to the literature procedure [14]. 

Reaction of Appel’s Salt 1 with 2-(Phenylsulfonyl)acetonitrile. 

To a stirred suspension of 4,5-dichloro-1,2,3-dithiazolium chloride (1) (104.3 mg, 0.50 

mmol) in DCM (2 mL) was added 2-(phenylsulfonyl)acetonitrile (90.6 mg, 0.50 mmol) and 

the reaction mixture was stirred at ca. 20 °C for 1 h. Pyridine (81 μL, 1.00 mmol) was then 

added and the reaction mixture was stirred for another 2 h. The mixture was then ad-

sorbed onto silica and chromatographed (n-hexane/DCM 50:50) to give S-(3-chloro-5-cy-

anoisothiazol-4-yl)benzenesulfonothioate (14) (30.7 mg, 19%) as colorless needles, m.p. 

146–147 °C (from c-hexane); Rf 0.33 (n-hexane/DCM 50:50); (found: C, 38.02; H, 1.70; N, 

8.65. C10H5ClN2O2S3 requires C, 37.91; H, 1.59; N, 8.84%); λmax(DCM)/nm 252 (log ε 4.36), 

294 (4.31); vmax/cm−1 2236w (C≡N), 1454m, 1447m, 1335s (S=O), 1314w, 1294m, 1190m, 1148s 

(S=O), 1076m, 997w, 959w, 827w, 758m, 718s; δH(500 MHz; CDCl3) 7.76-7.71 (3H, m, Ar 

CH), 7.58 (2H, dd, J 8.4, 7.5, Ar CH); δC(125 MHz; CDCl3) 165.1 (Cq), 143.9 (Cq), 142.7 (Cq), 

135.2 (CH), 130.0 (CH), 129.0 (Cq), 127.5 (CH), 108.1 (Cq); m/z (MALDI-TOF) 357 (M + K++2, 

40%), 355 (M + K+, 48), 341 (M + Na++2, 45), 339 (M + Na+, 100), 298 (22), 274 (40), 180 (18), 

153 (15), 133 (18). Further elution (n-hexane/DCM 25:75) gave (Z)-2-(4-chloro-5H-1,2,3-di-

thiazol-5-ylidene)-2-(phenylsulfonyl)acetonitrile (13) (36.8 mg, 23%) as yellow needles, 

mp 181–183 °C (from c-hexane); Rf 0.37 (n-hexane/DCM 25:75); (found: C, 38.09; H, 1.42; 

Scheme 4. Mechanistic rationale of the formation of isothiazole 14.

3. Materials and Methods

The reaction mixture was monitored by TLC using commercial glass-backed thin-layer
chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed under
UV light at 254 and 365 nm. The melting point was determined using a PolyTherm-A,
Wagner & Munz, Kofler—Hotstage Microscope apparatus (Wagner & Munz, Munich,
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Germany). The solvent used for recrystallization is indicated after the melting point. The
UV–vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer
(Perkin-Elmer, Waltham, MA, USA) and inflections are identified by the abbreviation
“inf”. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer
(Shimadzu, Kyoto, Japan) with Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI,
USA) and strong, medium and weak peaks are represented by s, m and w, respectively.
1H and 13C NMR spectra were recorded on a Bruker Avance 500 machine at 500 and
125 MHz, respectively, (Bruker, Billerica, MA, USA). Deuterated solvents were used for
homonuclear lock and the signals are referenced to the deuterated solvent peaks. Attached
proton test (APT) NMR studies were used for the assignment of the 13C peaks as CH3,
CH2, CH and Cq (quaternary). The matrix-assisted laser desorption/ionization-time of
flight (MALDI-TOF) mass spectrum (+ve mode) was recorded on a Bruker Autoflex III
Smartbeam instrument (Bruker). 4,5-Dichloro-1,2,3-dithiazolium chloride (1) was prepared
according to the literature procedure [14].

Reaction of Appel’s Salt 1 with 2-(Phenylsulfonyl)acetonitrile.
To a stirred suspension of 4,5-dichloro-1,2,3-dithiazolium chloride (1) (104.3 mg,

0.50 mmol) in DCM (2 mL) was added 2-(phenylsulfonyl)acetonitrile (90.6 mg, 0.50 mmol)
and the reaction mixture was stirred at ca. 20 ◦C for 1 h. Pyridine (81 µL, 1.00 mmol) was
then added and the reaction mixture was stirred for another 2 h. The mixture was then
adsorbed onto silica and chromatographed (n-hexane/DCM 50:50) to give S-(3-chloro-5-
cyanoisothiazol-4-yl)benzenesulfonothioate (14) (30.7 mg, 19%) as colorless needles, m.p.
146–147 ◦C (from c-hexane); Rf 0.33 (n-hexane/DCM 50:50); (found: C, 38.02; H, 1.70; N,
8.65. C10H5ClN2O2S3 requires C, 37.91; H, 1.59; N, 8.84%); λmax(DCM)/nm 252 (log ε 4.36),
294 (4.31); vmax/cm−1 2236w (C≡N), 1454m, 1447m, 1335s (S=O), 1314w, 1294m, 1190m,
1148s (S=O), 1076m, 997w, 959w, 827w, 758m, 718s; δH(500 MHz; CDCl3) 7.76-7.71 (3H,
m, Ar CH), 7.58 (2H, dd, J 8.4, 7.5, Ar CH); δC(125 MHz; CDCl3) 165.1 (Cq), 143.9 (Cq),
142.7 (Cq), 135.2 (CH), 130.0 (CH), 129.0 (Cq), 127.5 (CH), 108.1 (Cq); m/z (MALDI-TOF)
357 (M + K++2, 40%), 355 (M + K+, 48), 341 (M + Na++2, 45), 339 (M + Na+, 100), 298
(22), 274 (40), 180 (18), 153 (15), 133 (18). Further elution (n-hexane/DCM 25:75) gave
(Z)-2-(4-chloro-5H-1,2,3-dithiazol-5-ylidene)-2-(phenylsulfonyl)acetonitrile (13) (36.8 mg,
23%) as yellow needles, mp 181–183 ◦C (from c-hexane); Rf 0.37 (n-hexane/DCM 25:75);
(found: C, 38.09; H, 1.42; N, 8.61. C10H5ClN2O2S3 requires C, 37.91; H, 1.59; N, 8.84%);
λmax(DCM)/nm 267 (log ε 4.16), 283 inf (3.78), 433 (4.26); vmax/cm−1 2197m (C≡N), 1481m,
1470s, 1447m, 1315m (S=O), 1294m, 1190m, 1144s (S=O), 1082m, 1045m, 997w, 916w, 860s,
799w, 760m, 721s; δH(500 MHz; CDCl3) 8.03 (2H, dd, J 8.6, 1.3, Ar CH), 7.76 (1H, ddd, J 7.6,
7.6, 1.2, Ar CH), 7.63 (2H, dd, J 7.9, 7.9, Ar CH); δC(125 MHz; CDCl3) 158.7 (Cq), 143.6 (Cq),
138.1 (Cq), 135.2 (CH), 129.7 (CH), 128.0 (CH), 112.1 (Cq), 103.1 (Cq); m/z (MALDI-TOF) 357
(M + K++2, 9%), 355 (M + K+, 22), 341 (M + Na++2, 44), 339 (M + Na+, 100), 319 (MH++2, 5),
317 (MH+, 17), 133 (35).

X-ray crystallographic studies on S-(3-chloro-5-cyanoisothiazol-4-yl)benzenesulfonothioate
(14).

Data were collected on an Oxford-Diffraction Supernova diffractometer, equipped
with a CCD area detector utilizing Cu-Kα radiation (λ = 1.5418 Å). A suitable crystal was
attached to glass fibers using paratone-N oil and transferred to a goniostat where they
were cooled for data collection. Unit cell dimensions were determined and refined by
using 2397 (4.159◦ ≤ θ ≤ 71.800◦) reflections. Empirical absorption corrections (multi-scan
based on symmetry-related measurements) were applied using CrysAlis RED software [32].
The structures were solved by direct method and refined on F2 using full-matrix least
squares using SHELXL97 [33]. Software packages used: CrysAlis CCD [32] for data
collection, CrysAlis RED [32] for cell refinement and data reduction, WINGX for geometric
calculations [34], and DIAMOND [35] for molecular graphics. The non-H atoms were
treated anisotropically. The hydrogen atoms were placed in calculated, ideal positions and
refined as riding on their respective carbon atoms.
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Crystal refinement data for S-(3-chloro-5-cyanoisothiazol-4-yl)benzenesulfonothioate (14): iso-
lated as colorless needles (from DCE/n-pentane vapor diffusion), C10H5ClN2O2S3, M = 316.79,
orthorhombic, space group Pna2l, a = 14.6146(12) Å, b = 15.4871(8) Å, c = 5.3576(3) Å, α = 90◦,
β = 90◦, γ = 90◦, V = 1212.63(14) Å3, Z = 4, T = 100(2) K, ρcalcd = 1.735 g·cm−3, θmax = 71.800◦.
Refinement of 163 parameters on 1529 independent reflections out of 2397 measured reflec-
tions (Rint = 0.0358) led to R1 = 0.0431 (I > 2σ(I)), wR2 = 0.1141 (all data), and S = 1.211 with the
largest difference peak and hole of 0.357 and −0.367 e·Å−3, respectively. (CCDC: 2132438).

Supplementary Materials: The following are available online: mol file, 1H and 13C NMR spectra.
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