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Abstract: For the first time, we describe a new approach towards the synthesis of previously unknown
2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-oxo-7H-furo[2,3-f ]chromen-3-yl)acetic acid. The presented
method is based on the multicomponent condensation of 5-hydroxy-4,7-dimethyl-2H-chromen-2-one,
4-methoxyphenylglyoxal and Meldrum’s acid. It was shown that the studied reaction proceeds in
two steps including the initial interaction of starting materials in MeCN and the final formation of
furylacetic acid moiety in acidic media. The structures of the obtained compound were established
by 1H, 13C-NMR spectroscopy and high-resolution mass spectrometry.
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1. Introduction

Furocoumarin derivatives are an important class of heterocyclic compounds widely
presented in various natural products [1–7]. Numerous representatives of furocoumarins
possess significant biological activity [8–14]. Generally, products of this type are used as
active photosensitizers in psoralen and UVA (PUVA) therapy. Thus, furocoumarins can be
employed in treatment of various skin diseases [15–22]. In this regard, the development
of new methods for the synthesis of products containing the furocoumarin moiety is of
considerable interest.

In most cases, furocoumarins can be prepared on the basis of substituted hydroxy-
coumarins. α-Halogen ketones are generally employed as the second component for the
formation of the furocoumarin moiety [23–28]. Wherein, the use of the methodology of
multicomponent reactions can open access to a wide range of products containing the furo-
coumarin fragment. A significant advantage of this approach is the ability to obtain target
products in one synthetic stage [29–33]. It should be noted that we previously proposed
a general approach to the synthesis of condensed furylacetic acids based on the multi-
component reaction of various hydroxyl derivatives with arylglyoxals and Meldrum’s
acid [34–38]. We assumed that this approach could be used to synthesize substituted
furo[2,3-f ]coumarins.

2. Results

In the present communication, we report that a multicomponent reaction of 5-hydroxy-
4,7-dimethyl-2H-chromen-2-one 1, 4-methoxyphenylglyoxal 2 and Meldrum’s acid 3 in
the presence of Et3N leads to previously unknown 2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-
oxo-7H-furo[2,3-f ]chromen-3-yl)acetic acid 4 (Scheme 1). Earlier, it was demonstrated that
this type of reaction is a two-step cascade process. Herein, the interaction of components
in acetonitrile (MeCN) proceeds at the first stage, and the final acid-catalyzed cyclization
leads to the target product. It is important to note that in the considered case prolonged
reflux (16 h) in MeCN is necessary for the synthesis of furocoumarin derivative 4. At
the same time, it is necessary to use a 6-fold excess of arylglyoxal 2, Meldrum’s acid 3,
and Et3N for the complete conversion of coumarin 1 to target product 4. It should be
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noted that the starting compound 1 remains as an impurity in the resulting product 2 if
a smaller excess of the above-mentioned reagents is used. Apparently, this difference is
due to the low reactivity of the coumarin 1 compared with those of the previously studied
hydroxyl derivatives. Wherein, a mixture of hydrochloric and acetic acids is used for the
final cyclization similar to the previous works [34–38]. The presented method allows one
to synthesize the target 2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-oxo-7H-furo[2,3-f ]chromen-
3-yl)acetic acid 4 with a 74% yield.
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Scheme 1. Synthesis of 2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-oxo-7H-furo[2,3-f ]chromen-3-
yl)acetic acid 4.

The proposed reaction mechanism is presented in Scheme 2. At the first step, interac-
tion of Meldrum’s acid 3 with arylglyoxal 2 leads to intermediate A. Next, the addition of
coumarin anion B to Michael acceptor A results in the formation of adduct D. The further
acid-catalyzed cleavage of Meldrum’s acid moiety is followed by the elimination of CO2
and acetone-produced γ-ketoacid F. Finally, intermediate F is transformed to the target
product 4 via cyclodehydration including the hydroxyl group of the coumarin fragment
and the carbonyl unit.
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acid based on the multicomponent condensation of 5-hydroxy-4,7-dimethyl-2H-chromen-2-
one, 4-methoxyphenylglyoxal and Meldrum’s acid was elaborated. The advantages of this
approach are the application of readily available starting compounds, atom economy, and
easy work-up procedures, which can avoid chromatographic purification. The structure
of the synthesized furocoumarin was confirmed by 1H, 13C-NMR spectroscopy and high-
resolution mass spectrometry.

3. Materials and Methods

All starting chemicals and solvents were commercially available and were used as
received. NMR spectra were recorded with Bruker DRX 500 (500 MHz) spectrometers
(Billerica, MA, USA) in DMSO-d6. Chemical shifts (ppm) were given relative to solvent
signals (DMSO-d6: 2.50 ppm (1H NMR) and 39.52 ppm (13C NMR)). High-resolution mass
spectra (HRMS) were obtained on a Bruker micrOTOF II instrument (Bruker Daltonik
Gmbh, Bremen, Germany) using electrospray ionization (ESI). The melting points were
determined on a Kofler hot stage (Dresden, Germany). IR spectra were recorded on a
Bruker ALPHA (Santa Barbara, CA 93117, USA) spectrophotometer in a KBr pellet.

Experimental Procedure for the Synthesis of
2-(2-(4-methoxyphenyl)-4,9-dimethyl-7-oxo-7H-furo[2,3-f]chromen-3-yl)acetic Acid 4

A mixture of 5-hydroxy-4,7-dimethyl-2H-chromen-2-one 1 (2 mmol, 0.38 g), 4-
methoxyphenylglyoxal hydrate 2 (6 mmol, 1.09 g), Meldrum’s acid 3 (6 mmol, 0.86 g),
and Et3N (6 mmol, 0.84 mL) in 10 mL of MeCN was refluxed for 8 h. Then, an addi-
tional amount of 4-methoxyphenylglyoxal hydrate 2 (6 mmol, 1.09 g), Meldrum’s acid
3 (6 mmol, 0.86 g), and Et3N (6 mmol, 0.84 mL) was added, and the reaction mixture
was refluxed for 8 h. Next, AcOH (5 mL) was added, and the solvent was evaporated
under a reduced pressure. Then, AcOH (6 mL) and HClconc (3 mL) were added to the
residue, and the solution was refluxed for 15 min. Further, the solution was cooled,
and the resulting precipitate was filtered off and washed 70% aq. AcOH (3 × 7 mL).
To remove traces of AcOH and HCl, the precipitate was kept for 24 h in water (50 mL)
at room temperature, collected by filtration and washed with water (3 × 10 mL). Pale
yellow powder; yield 74% (0.56 g, 1.5 mmol); Rf = 0.6 (ethyl acetate/methanol volume
ratio = 4:1); mp 291–293 ◦C. 1H NMR (500 MHz, DMSO-d6) (Figure S1) δ 12.63 (br.s, 1H),
7.69 (d, J = 8.8 Hz, 2H), 7.13 (d, J = 8.8 Hz, 2H), 7.06 (d, J = 1.1 Hz, 1H), 6.30 (d, J = 1.5 Hz,
1H), 3.92 (s, 2H), 3.84 (s, 3H), 2.74 (d, J = 1.3 Hz, 3H), and 2.66 (s, 3H). 13C NMR (126
MHz, DMSO-d6) (Figure S2) δ 172.19, 159.71, 159.40, 152.90, 151.26, 150.77, 148.72, 135.41,
128.27, 124.51, 121.73, 114.45, 113.22, 113.16, 108.77, 104.39, 55.14, 30.69, 21.03, and 18.63.
IR spectra (KBr) (Figure S4), ν, cm−1: 3061, 3000, 2957, 2837, 2684, 2595, 2554, 2422, 2061,
1904, 1836, 1726, 1694, 1670, 1626, 1511, 1453, 1401, 1384, 1365, 1308, 1256, 1215, 1177,
1159, 1110, 1065, 1035, 992, 924. HRMS (ESI-TOF) (Figure S3) m/z: [M+H]+ Calcld for
C22H18O6: 379.1176; Found: 379.1177.

Supplementary Materials: The following are available online: copies of 1H, 13C-NMR, mass and IR
spectra for compound 4. Figure S1: 1H NMR spectrum (500 MHz) of 4 in DMSO-d6; Figure S2: 13C
{1H} NMR spectrum (126 MHz) of 4 in DMSO-d6; Figure S3: HRMS for compound 4; Figure S4: IR
spectrum for compound 4.
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