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Abstract: Based on recent discoveries concerning the numerous biological properties of thiazolidi-
nones and thiosemicarbazones, new N-substituted heterocyclic derivatives have been designed by
combining the indole ring with thioxothiazolidinone, thiazolidinone or thiosemicarbazone. Thus,
a series of new thioxothiazolidinone, thiazolidinone, or thiosemicarbazone derivatives bearing
indole-based moiety have been designed, synthesized, and developed in good yields.

Keywords: indole; thiosemicarbazone derivatives; thiazolidinone derivatives; thioxothiazolidi-
none derivatives

1. Introduction

The indolic nucleus is a heteroaromatic organic compound that is highly common
in nature. This structural unit is present in many bioactive molecules, whether natural
or synthetic. Indoles are an important class of heterocyclic compounds, and this kind of
structure has been revealed to have antimicrobial [1,2], antifungal [3], anti-inflammatory
and analgesic [4–6], anticonvulsant [7], anticancer [8,9], and anti-malarial properties [10].
The 4-thiazolidinone derivatives are one of the heterocyclic types which play an important
role in therapeutical chemistry, due to their variety in biological activity, as antiviral [11],
anti-inflammatory [12], anticancer [13], antimicrobial [14,15], antidiabetic [16], antioxi-
dant [17], anti-HIV agents [18]. Moreover, the 5-arylidene-2-thioxothiazolidin-4-one or
5-arylidenerhodanine derivatives represent particularly privileged moieties in drug dis-
covery because of their inherent tendency for biological activity [19–21]. For example, it
was reported that the incorporation of indolyl moiety as in N′-[(1H-indol-3-yl)methylene]-
isonicotinohydrazide derivative showed excellent to good anti-tubercular activity (com-
pound I, Figure 1) [22]. Compound II displayed potent broad-spectrum antibacterial
and antifungal activities [15]. Moreover, benzyl-1H-indole derivatives (indibulin III) also
possess prominent antitumor activity, for example, acting as a novel synthetic microtubule
inhibitor [23].

A new series of thiosemicarbazones 5a–e was prepared by the reaction of substituted
indole-3-carbaldehyde 3a–e on 4-chlorophenylthiosemicarbazide in ethanol, with acetic
acid as a catalyst. Substituted thiazolidinones compounds 7a–e were prepared by a cy-
cling reaction in ethanol with sodium acetate. The arylidenerhodanines 10a–e were also
prepared by condensation reactions of 2-thioxothiazolidin-4-one on several substituted
indole-3-carbaldehyde compounds. In the previous work [24], we synthesized new indole
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derivatives of potential biological interest. The biological activity of this kind of compound
will be interesting for further work. The synthesis of the target compounds (A, B, or C
series) was carried out as outlined in Scheme 1. The spectral data and elemental analysis
results of the synthesized compounds were in agreement with the proposed structures.
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2. Results and Discussion
2.1. Synthesis of N-Benzylindole-3-carboaldehyde Derivatives

Substituted N-benzylindole-3-carboxaldehyde derivatives 3a–e were prepared with
90–95% yield by the reaction of the indole-3-carboxaldehyde 1 with various substituted ben-
zyl halides 2a–e with K2CO3 as a base, in N,N-dimethylformamide (DMF) (Scheme 2) [25].
The structures of the synthesized compounds 3a–e were confirmed by their 1H-NMR and
13C-NMR spectral data. The 1H-NMR spectrum of compounds 3a–e shows characteris-
tic signals near δ 5.70 and 10.00 assignable to CH2 and CHO. Further confirmation was
achieved by the 13C-NMR spectrum, which showed signals at δ 49.78 and 185.0 due to CH2
and CHO, respectively (see Supporting Information).
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2.2. Synthesis of Thiosemicarbazones

The reaction of 4-(4-chlorophenyl)-3-thiosemicarbazide 4 with indole-3-carbaldehyde
derivatives 3a–e with a few drops of acetic acid, stirred for 3 h at 80 ◦C, lead to the
corresponding 4-(4-chlorophenyl)-3-thiosemicarbazone derivatives 5a–e in good yields
(Scheme 3). In the 1H-RMN spectrum, the most characteristic signals of thiosemicarbazones
5a–e correspond to the CH=N and the N–H protons. The 1H-RMN studies show that the
N–H protons of thiosemicarbazones 5a–e are in the range of 9.62 to 11.68 ppm for the
N–H adjacent to the mono-substituted phenyl ring and for the N–H adjacent to the CH=N
fraction, while CH=N protons are in the range of 8.41 to 8.53 ppm. All synthesized
compounds are in the E configuration, which was confirmed by the 1H-RMN spectroscopy,
because the NH group signal is in the range of 9 to 12 ppm, compared to the Z isomer,
which has a characteristic signal between 14 and 15 ppm [26,27].
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2.3. Synthesis of Thiazolidin-4-One Derivatives

The resulting thiosemicarbazones 5a–e were cyclized with ethyl bromoacetate in
ethanol and sodium acetate under reflux for 3 h to give 1,3-thiazolidin-4-one derivatives
7a–e, and final products were obtained in good yield (85–94%) (Scheme 4). The structures
of new compounds 7a–e were defined by their 1H-NMR and 13C-NMR data. The 1H-NMR
spectra present resonances assigned to the SCH2 group of the thiazolidine ring, and this
signal appears as a singlet at 4.08 ppm due to the methylene protons. The CH=N protons
in these kinds of structures were observed at 8.45 and 8.46 ppm.
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At the final step for the synthesis of products 10a–e, the 2-thioxothiazolidin-4-one
9 has undergone a condensation with indole-3-carbaldehydes 3a–e. The interaction was
realized in boiling alcohol with piperidine as a base, and final products were obtained with
moderate to good yields (85–73%) (Scheme 5).

In the 1H-NMR spectrum, a large singlet at δ = 13.57 ppm was assigned to the –NH
group, and the 13C-NMR spectrum showed signals at δ = 169.1 and 194.6 ppm assigned
to the (C=O) and (C=S) functionalities for the compound 10a. The arylidenerhodanines
synthesis 10a–e leads to two isomers, Z and E. Z-isomers are predominant (Z > 75%) and
thermodynamically more stable [26,27]. The exocyclic C=CH double bond configuration
can be determined by NMR spectroscopy. The Z-configuration of the 5-arylidene 10a–e
derivatives was confirmed by the signal for the C=CH methine proton with a higher
chemical shift between 7.90 and 7.95 ppm in a singlet form [28–33].
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3. Materials and Methods
3.1. General Information

The reagents were purchased from commercial suppliers and used without further
purification. Melting points were determined on Büchi B-540 apparatus and are uncorrected.
All solvents were dried following the procedure described by Armarego and Chai [34].
1H-NMR and 13C-NMR spectra were recorded on a Bruker Avance 300 MHz at 300 and
75 MHz, respectively. 1H-NMR spectra were recorded in CDCl3 referenced to the residual
CHCl3 at 7.26 ppm, and 13C-NMR spectra were referenced to the central peak of CDCl3
at 77.0 ppm. 19F-NMR was recorded at 282 MHz on the same instrument, using the
CFCl3 as internal reference (δ 0.0). Chemical shifts were reported in parts per million
(ppm, δ), and coupling constants (J) were given in Hertz (Hz). Abbreviations for signal
coupling are as follows: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; dd,
doublet of doublets; dq, doublet of quartets; m, multiplet. High-resolution mass spectra
(HRMS) were obtained by electrospray ionization time-of-flight (ESI) mass spectrometry.
Thin-layer chromatography (TLC) was performed on TLC silica gel 60 F254. Compounds
were visualized with UV light (λ = 254 nm) and/or by immersion in a KMnO4 solution
followed by heating. Products were purified by flash column chromatography on silica gel
(0.04–0.063 mm) using various mixtures of EtOAc and petroleum ether (35–60 ◦C fraction)
as eluent. Heating was performed using a magnetic stirrer hotplate and an appropriately
sized heating block. The compound names follow the IUPAC recommendations.

3.2. Experimental Section
3.2.1. General Procedure for the Synthesis of 1-Substituted-1H-indole-3-carbaldehydes
(3a–e) (35)

1-Substituted-1H-indole-3-carbaldehyde was synthesized by reaction of 1H-indole-
3-carbaldehyde 1 (1.45 g, 0.01 mol), the corresponding benzyl chloride 2a–e (0.011 mol),
and anhydrous K2CO3 (2.76 g, 0.02 mol) in N,N-dimethylformamide (30 mL). The reaction
mixture was stirred at 90 ◦C for 6 h, and the reaction was monitored by thin-layer chro-
matography. The reaction was stopped and cooled at room temperature, and the mixture
was poured into ice-cold water. The resulting precipitate was collected by filtration and
washed with water. The crude product was purified by recrystallization from ethanol and
dried under vacuum to give the desired compounds (3a–e).
1-Benzyl-1H-indole-3-carbaldehyde (3a): White solid, 90%, 2.21 g. mp 107–109 ◦C. 1H-NMR
(300 MHz, CDCl3): δ = 9.99 (s, 1H, CHO), 8.36–8.32 (m, 1H, indole C7-H), 7.69 (s, 1H, indole
C2-H), 7.36–7.29 (m, 6H), 7.21–7.15 (m, 2H), 5.34 (s, 2H, CH2) ppm. 13C-NMR (75 MHz,
CDCl3): δ = 184.7 (CHO), 138.6 (indole C2), 137.5 (Cquat), 135.4 (Cquat), 129.2 (2 CH), 128.5
(CH), 127.3 (2 CH), 125.6 (Cquat), 124.3 (CH), 123.1 (CH), 122.2 (CH), 118.6 (Cquat), 110.5
(indole C7), 51.0 (CH2) ppm.
1-(4-Fluorobenzyl)-1H-indole-3-carbaldehyde (3b): White solid, 93%, 2.35 g. mp 117–119 ◦C.
1H-NMR (300 MHz, CDCl3): δ = 9.98 (s, 1H, CHO), 8.35–8.30 (m, 1H, indole C7-H), 7.69
(s, 1H, indole C2-H), 7.36–7.29 (m, 3H, indole C4-H, C5-H and C6-H), 7.18–7.14 (m, 2H, 2H
phenyl), 7.03 (t, J = 8.6 Hz, 2H, 2H phenyl), 5.32 (s, 2H, CH2) ppm. 13C-NMR (75 MHz,
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CDCl3): δ = 184.8 (CHO), 138.5 (indole C2), 137.4 (Cquat), 136.6 (Cquat), 131.6 (q, J = 32.5 Hz,
Cquat), 130.4 (q, J = 1.1 Hz, CH), 129.9 (CH), 125.6 (Cquat), 125.4 (q, J = 3.7 Hz, CH), 124.6
(CH), 123.9 (q, J = 3.8 Hz, CH), 123.8 (q, J = 272 Hz, Cquat), 123.4 (CH), 122.4 (CH), 118.9
(Cquat), 110.3 (indole C7), 50.5 (CH2) ppm.
1-(4-(Trifluoromethyl)benzyl)-1H-indole-3-carbaldehyde (3c): White solid, 94%, 2.85 g. mp
133–13509 ◦C. 1H-NMR (300 MHz, CDCl3): δ = 10.02 (s, 1H, CHO), 8.37–8.32 (m, 1H, indole
C7-H), 7.74 (s, 1H, indole C2-H), 7.60 (d, J = 7.8 Hz, 2H, 2H phenyl), 7.51 (bs, 1H, 1H phenyl),
7.46 (t, J = 7.8 Hz, 1H, 1H phenyl), 7.37–7.26 (m, 4H, C4-H, C5-H, C6-H and 1H phenyl), 5.43
(s, 2H, CH2) ppm. 13C-NMR (75 MHz, CDCl3): δ = 184.7 (CHO), 138.6 (indole C2), 137.5
(Cquat), 135.4 (Cquat), 129.2 (2 CH), 128.5 (CH), 127.3 (2 CH), 125.6 (Cquat), 124.3 (CH), 123.1
(CH), 122.2 (CH), 118.6 (Cquat), 110.5 (indole C7), 51.0 (CH2) ppm.
1-(3-Chlorobenzyl)-1H-indole-3-carbaldehyde (3d): White solid, 93%, 2.50 g. mp 79–81 ◦C.
1H-NMR (300 MHz, CDCl3): δ = 9.99 (s, 1H, CHO), 8.36–8.31 (m, 1H, indole C7-H), 7.72 (s,
1H, indole C2-H), 7.36–7.25 (m, 5H, indole C4-H, C5-H, C6-H, 2H phenyl), 7.17 (bs, 1H, 1H
phenyl), 7.04–7.00 (m, 1H, 1H phenyl), 5.32 (s, 2H, CH2) ppm. 13C-NMR (75 MHz, CDCl3):
δ = 184.8 (CHO), 138.6 (indole C2), 137.5 (Cquat), 137.4 (Cquat), 135.1 (Cquat), 130.5 (CH),
128.7 (CH), 127.3 (CH), 125.5 (Cquat), 125.3 (CH), 124.5 (CH), 123.3 (CH), 122.3 (CH), 118.7
(Cquat), 110.4 (indole C7), 50.4 (CH2) ppm.
2-((3-Formyl-1H-indol-1-yl)methyl)benzonitrile (3e): White solid, 94%, 2.44 g. mp 133–135 ◦C.
1H-NMR (300 MHz, CDCl3): δ = 9.99 (s, 1H, CHO), 8.45 (s, 1H, indole C2-H), 8.18 (d,
J = 8 Hz, 1H, indole C4-H), 7.97 (d, 1H, J = 8 Hz, 1H, indole C7-H), 7.67 (1H, td, J = 1.4 Hz,
J = 7.7 Hz, Ar-H), 7.60–7.52 (m, 2H, Ar-H), 7.35–7.25 (m, 2H, Ar-H), 7.07 (1H, d, J = 7.58 Hz,
Ar-H), 5.83 (s, 2H, CH2) ppm. 13C-NMR (75 MHz, CDCl3): δ = 185.0 (CHO), 141.2 (indole
C2), 140.0 (Cquat), 137.1 (Cquat), 133.8 (CH), 133.5 (CH), 128.7 (CH), 127.8 (CH), 124.7 (CH),
123.9 (CH), 122.8 (CH), 121.2 (CH), 117.7 (Cquat), 117.2 (Cquat), 111.1 (Cquat), 110.4 (CH), 48.2
(CH2) ppm.

3.2.2. General Procedure for the Synthesis of Thiosemicarbazones (5a–e) (35)

To a solution of 4-chlorophenylthiosemicarbazide 4 (0.605 g, 3 mmol, 1 equiv) in
ethanol (33 mL) were added the 1-substituted-1H-indole-3-carbaldehyde (6.3 mmol, 1.05 equiv)
and acetic acid (0.50 mL). The mixture was stirred and heated under reflux for 3 h. The
reaction was stopped and cooled to room temperature. After, the solid was filtered and
recrystallized from ethanol-DMF (3:1) to give compounds 5a–e.
(E)-2-((1-Benzyl-1H-indol-3-yl)methylene)-N-(4-chlorophenyl)hydrazine-1-carbothioamide (5a): Beige
solid, 93%, 0.97 g. mp 203–205 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 11.68 (bs, 1H, NH),
9.68 (bs, 1H, NH), 8.41 (s, 1H, indole C2-H), 8.26 (d, 1H, J = 7.3 Hz, Ar-H), 8.10 (s, 1H,
CH=N), 7.68 (d, 2H, J = 8.7 Hz, Ar-H), 7.52 (d, 1H, J = 7.6 Hz, Ar-H), 7.42 (d, 2H, J = 8.7 Hz,
Ar-H), 7.36–7.14 (m, 7H, Ar-H), 5.47 (s, 2H, PhCH2) ppm. 13C-NMR (75 MHz, DMSO-d6):
δ = 174.5 (CS), 141.0 (CH), 138.3 (Cquat), 137.4 (Cquat), 136.9 (Cquat), 134.3 (CH), 128.9 (Cquat),
128.6 (2CH), 127.9 (2CH), 127.6 (CH), 127.1 (2CH), 126.9 (2CH), 124.7 (Cquat), 122.9 (CH),
122.2 (CH), 121.1 (CH), 110.7 (CH), 110.6 (Cquat), 49.4 (CH2) ppm. HRMS (ESI): calcd. for
C23H20ClN4S [M + H]+ 419.10972; found 419.10981.
(E)-N-(4-Chlorophenyl)-2-((1-(4-fluorobenzyl)-1H-indol-3-yl)methylene)hydrazine-1-carbothioamide
(5b): Beige solid, 92%, 0.97 g. mp 211–213 ◦C. 1H-NMR (300 MHz, Acetone-d6): δ = 10.5 (bs,
1H, NH), 9.62 (bs, 1H, NH), 8.51 (s, 1H, indole C2-H), 8.28 (dd, 1H, J = 7.1 Hz, J = 1.3 Hz, Ar-
H), 7.96 (s, 1H, CH=N), 7.90–7.83 (m, 2H, Ar-H), 7.51 (d, 1H, J = 7.4 Hz, Ar-H), 7.40 (d, 2H,
J = 8.8 Hz, Ar-H), 7.37–7.31 (m, 2H, Ar-H), 7.29–7.18 (m, 2H, Ar-H), 7.11 (t, 2H, J = 8.8 Hz,
Ar-H), 5.53 (s, 2H, PhCH2) ppm. 19F-NMR (282 MHz, DMSO-d6): δ = −116.3 ppm. 13C-
NMR (75 MHz, DMSO-d6): δ = 174.5 (CS), 161.5 (d, J = 244 Hz, Cquat), 140.9 (CH), 138.3
(Cquat), 136.8 (Cquat), 134.2 (CH), 133.6 (d, J = 3.1 Hz, Cquat), 129.3 (d, J = 3.2 Hz, 2CH), 128.9
(Cquat), 127.9 (2CH), 126.8 (2CH), 124.8 (Cquat), 122.9 (CH), 122.3 (CH), 121.1 (CH), 115.4
(d, J = 21.6 Hz, 2CH), 110.7 (Cquat), 110.6 (CH), 48.6 (CH2) ppm. HRMS (ESI): calcd. for
C23H19ClFN4S [M + H]+ 437.10030; found 437.10029.
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(E)-N-(4-Chlorophenyl)-2-((1-(3-(trifluoromethyl)benzyl)-1H-indol-3-yl)methylene)hydrazine-1-
carbothioamide (5c): White solid, 89%, 1.00 g. mp 224–226 ◦C. 1H-NMR (300 MHz, DMSO-d6):
δ = 11.68 (bs, 1H, NH), 9.69 (bs, 1H, NH), 8.42 (s, 1H, indole C2-H), 8.28 (d, 1H, J = 7.1 Hz,
Ar-H), 8.12 (s, 1H, CH=N), 7.67 (d, 2H, J = 8.7 Hz, Ar-H), 7.54 (d, 1H, J = 7.7 Hz, Ar-H),
7.42 (d, 2H, J = 8.7 Hz, Ar-H), 7.38–7.32 (m, 3H, Ar-H), 7.27–7.15 (m, 3H, Ar-H), 5.49 (s,
2H, PhCH2) ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 174.6 (CS), 140.9 (CH), 138.9 (Cquat),
138.3 (Cquat), 136.8 (Cquat), 134.3 (CH), 131.2 (CH), 129.8 (CH), 129.3 (q, J = 31.7 Hz, Cquat),
128.9 (Cquat), 127.9 (2CH), 126.9 (2CH), 124.7 (Cquat), 124.4 (q, J = 3.6 Hz, CH), 124.0 (q,
J = 272 Hz, Cquat), 123.7 (q, J = 3.8 Hz, CH), 123.1 (CH), 122.4 (CH), 121.2 (CH), 110.9 (Cquat),
110.5 (CH), 48.7 (CH2) ppm. HRMS (ESI): calcd. for C24H19ClF3N4S [M + H]+ 487.09710;
found 487.09720.
(E)-2-((1-(3-Chlorobenzyl)-1H-indol-3-yl)methylene)-N-(4-chlorophenyl)hydrazine-1-carbothioamide
(5d): Beige solid, 93%, 0.97 g. mp 203–205 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 11.68 (bs,
1H, NH), 9.68 (bs, 1H, NH), 8.41 (s, 1H, indole C2-H), 8.26 (d, 1H, J = 7.3 Hz, Ar-H), 8.10
(s, 1H, CH=N), 7.68 (d, 2H, J = 8.7 Hz, Ar-H), 7.52 (d, 1H, J = 7.6 Hz, Ar-H), 7.42 (d, 2H,
J = 8.7 Hz, Ar-H), 7.36–7.14 (m, 7H, Ar-H), 5.47 (s, 2H, PhCH2) ppm. 13C-NMR (75 MHz,
DMSO-d6): δ = 174.6 (CS), 140.9 (CH), 139.9 (Cquat), 138.3 (Cquat), 136.8 (Cquat), 134.3 (CH),
133.2 (Cquat), 130.6 (CH), 128.9 (Cquat), 127.9 (2CH), 127.6 (CH), 127.0 (CH), 126.9 (2CH),
125.8 (CH), 124.7 (Cquat), 123.1 (CH), 122.3 (CH), 121.2 (CH), 110.8 (Cquat), 110.6 (CH), 48.7
(CH2) ppm. HRMS (ESI): calcd. for C23H19Cl2N4S [M + H]+ 453.07075; found 453.07083.
(E)-N-(4-Chlorophenyl)-2-((1-(2-cyanobenzyl)-1H-indol-3-yl)methylene)hydrazine-1-carbothioamide
(5e): Beige solid, 89%, 1.00 g. mp 229–231 ◦C. 1H-NMR (300 MHz, Acetone-d6): δ = 10.56
(bs, 1H, NH), 9.64 (bs, 1H, NH), 8.53 (s, 1H, indole C2-H), 8.31 (d, 1H, J = 7.2 Hz, Ar-H), 7.99
(s, 1H, CH=N), 7.90–7.82 (m, 3H, Ar-H), 7.63 (td, 1H, J = 7.6 Hz, J = 1.4 Hz, Ar-H), 7.58–7.50
(m, 2H, Ar-H), 7.40 (d, 2H, J = 8.8 Hz, Ar-H), 7.32–7.22 (m, 2H, Ar-H), 7.09–7.04 (m, 1H,
Ar-H), 5.78 (s, 2H, PhCH2) ppm. 13C-NMR (75 MHz, CHCl3): δ = 174.7 (CS), 140.8 (CH),
140.7 (Cquat), 138.3 (Cquat), 137.0 (Cquat), 134.5 (CH), 133.8 (CH), 133.4 (CH), 128.9 (Cquat),
128.6 (CH), 127.9 (2CH), 127.6 (CH), 126.9 (2CH), 124.7 (Cquat), 123.3 (CH), 122.5 (CH), 121.4
(CH), 117.2 (Cquat), 111.2 (Cquat), 110.4 (CH), 110.3 (Cquat), 47.8 (CH2) ppm. HRMS (ESI):
calcd. for C24H19ClN4S [M + H]+ 444.10497; found 444.10489.

3.2.3. General Procedure for the Synthesis of Thiazolidin-4-ones (7a–e)

A mixture of compound 5a–e (1.5 mmol, 1 eq), ethyl 2-bromoacetate 6 (0.24 mL,
1.5 mmol), and anhydrous sodium acetate (0.37 g, 4.5 mmol, 3 eq) in ethanol (30 mL) was
stirred at 80 ◦C for 6 h. The reaction mixture was cooled at room temperature, poured into
ice cold water, and the solid was filtered, washed with water, and recrystallized from a
mixture of ethanol-DMF (3:1).
2-(2-((1-Benzyl-1H-indol-3-yl)methylene)hydrazono)-3-(4-chlorophenyl)thiazolidin-4-one (7a): Yel-
low solid, 94%, 0.43 g. mp 250–252 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 8.45 (s, 1H,
indole C2-H), 8.43–8.40 (m, 1H, Ar-H), 7.85 (s, 1H, CH=N), 7.56 (d, 2H, J = 8.9 Hz, Ar-H),
7.52–7.46 (m, 3H, Ar-H), 7.36–7.22 (m, 7H, Ar-H), 5.52 (s, 2H, PhCH2), 4.06 (s, 2H, CH2)
ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 172.2 (CO), 161.8, 153.9, 137.9, 137.7, 135.3, 134.6,
133.6, 130.6, 129.5, 129.1, 127.6, 125.8, 123.4, 122.7, 121.6, 111.3, 50.0 (CH2), 32.7 (CH2) ppm.
HRMS (ESI): calcd. for C25H20ClN4OS [M + H]+ 459.10463; found 459.10475.
2-(2-((1-(4-Fluorobenzyl)-1H-indol-3-yl)methylene)hydrazono)-3-(4-chlorophenyl)thiazolidin-4-one
(7b): Brown solid, 94%, 0.42 g. mp 242–244 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 8.45
(s, 1H, indole C2-H), 8.27–8.24 (m, 1H, Ar-H), 7.96 (s, 1H, CH=N), 7.61 (d, 2H, J = 8.9 Hz,
Ar-H), 7.57–7.46 (m, 1H, Ar-H), 7.46 (d, 2H, J = 8.7 Hz, Ar-H), 7.33–7.28 (m, 2H, Ar-H),
7.25–7.21 (m, 2H, Ar-H), 7.15 (t, 2H, J = 8.9 Hz, Ar-H), 5.46 (s, 2H, PhCH2), 4.08 (s, 2H, CH2)
ppm. 19F-NMR (282 MHz, DMSO-d6): δ = −114.9 ppm. 13C-NMR (75 MHz, DMSO-d6):
δ = 171.9 (CO), 161.7 (Cquat), 161.5 (d, J = 243 Hz, Cquat), 153.3, 136.9, 134.8, 134.0, 133.5
(d, J = 3.2 Hz, Cquat), 133.1, 130.2, 129.3 (d, J = 8.3 Hz), 129.1, 125.2, 123.0, 122.3, 121.3,
115.4 (d, J = 21.5 Hz), 111.6, 110.8, 48.6 (CH2), 32.7 (CH2) ppm. HRMS (ESI): calcd. for
C25H19ClFN4OS [M + H]+ 477.09521; found 477.09528.
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2-(2-((1-(3-(Trifluoromethyl)benzyl)-1H-indol-3-yl)methylene)hydrazono)-3-(4-chlorophenyl)
thiazolidin-4-one (7c): Beige solid, 91%, 0.48 g. mp 230–232 ◦C. 1H-NMR (300 MHz, DMSO-
d6): δ = 8.46 (s, 1H, indole C2-H), 8.29–8.26 (m, 1H, Ar-H), 8.02 (s, 1H, CH=N), 7.66–7.58 (m,
4H, Ar-H), 7.56–7.53 (m, 3H, Ar-H), 7.47 (d, 2H, J = 8.7 Hz, Ar-H), 7.28–7.20 (m, 2H, Ar-H),
5.60 (s, 2H, PhCH2). 4.09 (s, 2H, CH2) ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 171.8 (CO),
161.8, 153.3, 138.9, 136.9, 134.9, 134.0, 133.1, 131.1, 130.2, 129.8, 129.7 (q, J = 31 Hz), 129,1,
125.2, 124.4 (q, J = 3.7 Hz), 124.0 (q, J = 272 Hz), 123.7 (q, J = 4 Hz), 123.1, 122.3, 121.4,
111.8, 110.7, 48.7 (CH2), 32.3 (CH2) ppm. HRMS (ESI): calcd. for C26H19ClF3N4OS [M + H]+

527.09202; found 527.09212.
2-(2-((1-(3-Chlorobenzyl)-1H-indol-3-yl)methylene)hydrazono)-3-(4-chlorophenyl)thiazolidin-4-one
(7d): Yellow solid, 90%, 0.44 g. mp 252–254 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 8.45
(s, 1H, indole C2-H), 8.27–8.24 (m, 1H, Ar-H), 7.96 (s, 1H, CH=N), 7.60 (d, 2H, J = 8.8 Hz,
Ar-H), 7.56–7.51 (m, 1H, Ar-H), 7.47 (d, 2H, J = 8.7 Hz, Ar-H), 7.33–7.20 (m, 6H, Ar-H),
5.47 (s, 2H, PhCH2), 4.09 (s, 2H, CH2) ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 171.9 (CO),
161.7, 153.4, 137.4, 137.1, 135.0, 134.1, 133.1, 130.2, 129.1, 128.8 (2CH), 127.6, 127.1 (2CH),
125.2, 123.0, 122.3, 121.3, 111.5, 110.9, 49.4 (CH2), 32.3 (CH2) ppm. HRMS (ESI): calcd. for
C25H19Cl2N4OS [M + H]+ 493.06566; found 493.06574.
2-(2-((1-(2-Cyanobenzyl)-1H-indol-3-yl)methylene)hydrazono)-3-(4-chlorophenyl)thiazolidin-4-one
(7e): Beige solid, 85%, 0.41 g. mp 253–255 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 8.46 (s,
1H, indole C2-H), 8.31–8.28 (s, 1H, Ar-H), 7.93 (s, 1H, CH=N), 7.91–7.90 (m, 1H, Ar-H), 7.62–
7.58 (m, 3H, Ar-H), 7.52–7.45 (m, 4H, Ar-H), 7.25–7.22 (m, 1H, Ar-H), 5.72 (s, 2H, PhCH2),
4.09 (s, 2H, CH2) ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 171.8 (CO), 161.9 (Cquat), 153.3
(CH), 140.6 (Cquat), 137.2 (Cquat), 135.1 (CH), 134.0 (Cquat), 133.7 (CH), 133.4 (CH), 133.1
(Cquat), 130.2 (2CH), 129.1 (2CH), 128,5 (CH), 127.7 (CH), 125.1 (Cquat), 123.2 (CH), 122.4
(CH), 121.5 (CH), 117.2 (Cquat), 112.0 (Cquat), 110.6 (CH), 110.3 (Cquat), 47.8 (CH2), 32.3 (CH2)
ppm. HRMS (ESI): calcd. for C26H19ClN5OS [M + H]+ 484.09988; found 484.09994.

3.2.4. General Procedure for the Synthesis of Thioxothiazolinones (10a–e)

We mixed 2-thioxothiazolidin-4-one 9 (0.2 g, 1.5 mmol, 1 equiv) and indole-3-carbaldehyde
(3a–e) (1.65 mmol, 1.1 equiv) in a two-neck round-bottom flask, with a sufficient quantity
of ethanol for the dissolution of the starting reagents. The reaction mixture was heated
at reflux at 80 ◦C, and 10 mol% of piperidine was added. The reaction was followed by
TLC and at the end of the reaction, the reaction was stopped, and the mixture was cooled
to room temperature. The final product was filtered and washed with distilled water to
remove traces of piperidine.
(Z)-5-((1-Benzyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one (10a): Yellow solid, 85%,
0.45 g. mp 243–245 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 13.58 (s, 1H, NH), 8.11 (s, 1H),
7.97 (dd, 1H, J = 7.0 Hz, J = 1.6 Hz, Ar-H), 7.91 (s, 1H), 7.57 (dd, 1H, J = 7.0 Hz, J = 1.5 Hz,
Ar-H), 7.36–7.20 (m, 7H, Ar-H), 5.60 (s, 2H, PhCH2) ppm. 13C-NMR (75 MHz, DMSO-d6):
δ = 194.6 (CS), 169.1 (CO), 136.9 (Cquat), 136.1 (Cquat), 132.7 (CH), 128.7 (2CH), 127.7 (CH),
127.5 (Cquat), 127.3 (2CH), 123.8 (CH), 123.4 (CH), 121.7 (CH), 118.8 (Cquat), 118.5 (CH),
111.4 (CH), 110.5 (Cquat), 49.8 (CH2) ppm. HRMS (ESI): calcd. for C19H15N2OS2 [M + H]+

351.06258; found 351.06264.
(Z)-5-((1-(4-Fluorobenzyl)-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one (10b): Yellow solid,
74%, 0.41 g. mp 219–221◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 13.58 (s, 1H, NH), 8.12
(s, 1H), 7.96 (dd, 1H, J = 7.0 Hz, J = 1.4 Hz, Ar-H), 7.91 (s, 1H), 7.59 (dd, 1H, J = 7.3 Hz,
J = 1.1 Hz, Ar-H), 7.43–7.36 (m, 2H, Ar-H), 7.29–7.14 (m, 4H, Ar-H) 5.58 (s, 2H, PhCH2)
ppm. 19F-NMR (282 MHz, DMSO-d6): δ = −114.8 ppm. 13C-NMR (75 MHz, DMSO-d6):
δ = 194.6 (CS), 169.1 (CO), 161.9 (d, J = 243 Hz, Cquat), 136.5 (Cquat), 133.1 (d, J = 3.1 Hz,
Cquat), 132.6 (CH), 129.5 (d, J = 8.3 Hz, CH), 127.6 (Cquat), 123.8 (CH), 123.5 (CH), 121.8
(CH), 118.8 (CH), 118.6 (Cquat), 115.4 (d, J = 21.5 Hz, CH), 113.4 (CH), 110.6 (Cquat), 49.0
(CH2) ppm. HRMS (ESI): calcd. for C19H14FN2OS2 [M + H]+ 369.05316; found 369.05319.
(Z)-2-Thioxo-5-((1-(3-(trifluoromethyl)benzyl)-1H-indol-3-yl)methylene)thiazolidin-4-one (10c): Yellow
solid, 85%, 0.50 g. mp 208–210 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 8.08 (s, 1H), 7.91–7.87
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(m, 1H, Ar-H), 7.87 (s, 1H), 7.73 (bs, 1H, Ar-H), 7.64 (d, 1H, J = 7.8 Hz, Ar-H), 7.59–7.53 (m,
2H, Ar-H), 7.46 (d, 1H, J = 7.6 Hz, Ar-H), 7.28–7.17 (m, 2H, Ar-H), 5.69 (s, 2H, PhCH2) ppm.
19F-NMR (282 MHz, DMSO-d6): δ = −61.1 ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 179.6
(CS), 172.4 (CO), 138.9 (Cquat), 136.1 (Cquat), 131.0 (CH), 130.3 (CH), 129.8 (CH), 129.2 (q,
J = 31.7 Hz, Cquat), 127.5 (Cquat), 124.3 (q, J = 3.8 Hz, CH), 124.0 (q, J = 272 Hz, Cquat), 123.7
(q, J = 3.8 Hz, CH), 123.5 (Cquat), 123.1 (CH), 121.1 (CH), 120.7 (CH), 118.7 (CH), 111.0
(Cquat), 110.9 (CH), 48.9 (CH2) ppm. HRMS (ESI): calcd. for C20H14ClF3N2OS2 [M + H]+

419.04996; found 419.05003.
(Z)-5-((1-(3-Chlorobenzyl)-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one (10d): Yellow
solid, 73%, 0.42 g. mp 265–267 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 13.6 (bs, 1H,
NH), 8.13 (s, 1H), 7.97 (d, J = 7.7 Hz, Ar-H), 7.90 (s, 1H), 7.58 (d, 1H, J = 7.8 Hz, Ar-H),
7.41–7.22 (m, 5H, Ar-H), 5.61 (s, 2H, PhCH2) ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 179.6
(CS), 161.1 (CO), 140.0, 136.5, 133.7, 133.0, 131.2, 131.1, 128.3, 128.2, 127.6, 126.4, 124.0, 122.3,
119.4, 111.8, 111.3, 49.6 (CH2) ppm. HRMS (ESI): calcd. for C19H14ClN2OS2 [M + H]+

385.02361; found 385.02372.
(Z)-2-((3-((4-Oxo-2-thioxothiazolidin-5-ylidene)methyl)-1H-indol-1-yl)methyl)benzonitrile e (10e):
Yellow solid, 73%, 0.42 g. mp 244–246 ◦C. 1H-NMR (300 MHz, DMSO-d6): δ = 8.04 (s,
1H), 7.95–7.91 (d, J = 7.7 Hz, Ar-H), 7.88 (s, 1H), 7.60 (td, 1H, J = 7.7 Hz, J = 1.4 Hz, Ar-H),
7.51–7.46 (m, 2H, Ar-H), 7.28–7.20 (m, 2H, Ar-H), 6.84 (d, J = 7.7 Hz, Ar-H), 5.83 (s, 2H,
PhCH2) ppm. 13C-NMR (75 MHz, DMSO-d6): δ = 179.6 (CS), 172.3 (CO), 140.8 (Cquat),
136.3 (Cquat), 133.8 (CH), 133.4 (CH), 130.8 (CH), 128.4 (CH), 127.4 (Cquat), 127.2 (CH),
123.7 (Cquat), 123.3 (CH), 121.3 (CH), 120.6 (CH), 118.8 (CH), 117.3 (Cquat), 111.2 (Cquat),
110.8 (CH), 110.1 (Cquat), 48.7 (CH2) ppm. HRMS (ESI): calcd. for C20H14N3OS2 [M + H]+

376.05783; found 376.05788.

4. Conclusions

In summary, we have developed an effective new protocol for the preparation of
indole substituted at position 1 and 3 for the series A. Knoevenagel-type condensation
affords a new series of thiosemicarbazones or thioxothiazolinones with excellent yields
according to the procedures described in [35]. The cyclization of thiosemicarbazones
with ethyl bromoacetate furnished a new series of thiazolidinones also with a good yield.
In vitro studies of the antimicrobial activity of all these molecules on various pathogenic
bacteria (Staphylococcus aureus and Pseudomonas aeruginosa) are in progress in our laboratory.
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