
molbank

Communication

Hybrid Pyridine Bis-Anthracene-Imidazolium Salt: NMR
Studies on Zn-Acetate Complexation

Dorina Amăriucăi-Mantu 1 , Violeta Mangalagiu 2 , Catalina-Ionica Ciobanu 2 and Vasilichia Antoci 1,*

����������
�������
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having a pyridine scaffold. NMR studies of dimer generation, as well as complexation with zinc
acetate were performed.
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1. Introduction

In the field of supramolecular chemistry, the design and synthesis of chemosensors
for the detection of metal ions have been widely exploited, due to their biological and envi-
ronmental significance [1–3]. Most of these receptors can be considered hybrid compounds
based on a moiety of imidazole, benzimidazole and pyridine, attached to the fluorophore,
which is the anthracene unit [1–5].

Considering our experience in the field of the synthesis of hybrid compounds with
imidazole/benzimidazole, pyridine and anthracene units [2,6–11], and our previous expe-
rience in the area of cycloimonium ylides [12–22], we decided to synthesize a novel hybrid
pyridine bis-anthracene-imidazolium salt, and also to study its complexation to Zn acetate
by NMR.

2. Results and Discussion

The reaction pathway to obtain the new hybrid pyridine bis-anthracene-imidazolium
salt 3 involve a quaternization reaction of 2,6-bis((1H-imidazol-1-yl)methyl)pyridine 1, pre-
vious reported [7], with and 9-(chloromethyl)anthracene 2, Scheme 1. The structure of new
hybrid salt 3 was proved by NMR experiments (1H-, 13C-NMR, 2D: COSY, HMQC, HMBC).

 
 

 

 
Molbank 2021, 2021, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molbank 

Communication 

Hybrid Pyridine Bis-Anthracene-Imidazolium Salt: NMR  
Studies on Zn-Acetate Complexation 
Dorina Amăriucăi-Mantu 1, Violeta Mangalagiu 2, Catalina-Ionica Ciobanu 2 and Vasilichia Antoci 1,* 

1 Faculty of Chemistry, Alexandru Ioan Cuza University of Iasi, 11 Carol 1st Blvd, 700506 Iasi, Romania; 
dorina.mantu@uaic.ro 

2 Institute of Interdisciplinary Research-CERNESIM Center, Alexandru Ioan Cuza University of Iasi,  
11 Carol I, 700506 Iasi, Romania; violeta.mangalagiu@uaic.ro (V.M.); catalina.ciobanu@uaic.ro (C.-I.C.) 

* Correspondence: vasilichia.antoci@uaic.ro; Tel.: +40-232-2011022535 

Abstract: We report here the design and synthesis of a new hybrid bis-anthracene-imidazolium salt, 
having a pyridine scaffold. NMR studies of dimer generation, as well as complexation with zinc 
acetate were performed. 

Keywords: hybrid salt; dimer generation; Zn complexation; NMR studies 
 

1. Introduction 
In the field of supramolecular chemistry, the design and synthesis of chemosensors 

for the detection of metal ions have been widely exploited, due to their biological and 
environmental significance [1–3]. Most of these receptors can be considered hybrid com-
pounds based on a moiety of imidazole, benzimidazole and pyridine, attached to the 
fluorophore, which is the anthracene unit [1–5]. 

Considering our experience in the field of the synthesis of hybrid compounds with 
imidazole/benzimidazole, pyridine and anthracene units [2,6–11], and our previous expe-
rience in the area of cycloimonium ylides [12–22], we decided to synthesize a novel hybrid 
pyridine bis-anthracene-imidazolium salt, and also to study its complexation to Zn acetate 
by NMR. 

2. Results and Discussion 
The reaction pathway to obtain the new hybrid pyridine bis-anthracene-imidazolium 

salt 3 involve a quaternization reaction of 2,6-bis((1H-imidazol-1-yl)methyl)pyridine 1, 
previous reported [7], with and 9-(chloromethyl)anthracene 2, Scheme 1. The structure of 
new hybrid salt 3 was proved by NMR experiments (1H-, 13C- NMR, 2D: COSY, HMQC, 
HMBC).  

N

N N

N N

Cl

acetone

N

N

N

N

NCl

Cl

1

2

34

1 2

1'
2'

4'

5'

6'
7'

8'
9'

10'

11'

12'

13'
14'

15'

16'

ref lux

3

5

 
Scheme 1. The route of synthesis of hybrid pyridine bis-anthracene-imidazolium salt 3. 
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Scheme 1. The route of synthesis of hybrid pyridine bis-anthracene-imidazolium salt 3.

In the next stage, we studied the complexation process of ylide 4 with Zn2+ cation [Zn2+

cation was generated from aqueous deuterated solution of zinc acetate (1.25 × 10−2 M)].
The ylide 4, was generated in situ from the corresponding bis-anthracene-imidazolium
salt 3 [previous dissolved in deuterated DMSO (2.5 × 10−3 M)] using aqueous deuterated
solutions of potassium carbonate (2 × 10−3 M and 2.5 × 10−1 M).
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Our expectation was to obtain a complex of ylide 4 with Zn2+ of type 5, Scheme 2 as in
related cases [5]. Instead, because of high reactivity of ylide 4, a dimerisation process took
place (via a 3 + 3 dipolar cycloaddition of an ylide molecule to another) when the dimeric
structure type 6 was obtained. In the next step, the dimer 6 complexes with Zn2+, leading
to the final product, the dimer complex with Zn2+, type 7. The structure of Zn complex,
type 7, is a proposed structure but different coordination of Zn2+ ion cannot be excluded.
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Scheme 2. The complexation process with Zn2+ of ylide 4.

In Figure 1 are presented the overlapped 1H-NMR spectra of salt 3, dimeric structure
6 and dimeric complex with Zn2+ type 7. Here are described the quantities of reactants
used in the experiments and the exchange of the color of solutions.

In the 1H-NMR spectrum of dimeric structure type 6 it can be observed the disap-
pearance of protons (–CH2–)6′ , which in salt 3 appears as a singlet at 6.48 ppm. Also, the
signal around 9.06 ppm of H2′ from imidazole nucleus of salt 3 does not appear in the
NMR spectrum of dimer 6.

The dimer complexation with Zn2+ induces a visible shielding effect on the chemical
shifts of the protons from aliphatic and aromatic zone.
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Figure 1. The 1H-NMR spectra of salt 3, dimeric structure 6 and dimeric complex 7.

3. Materials and Methods
3.1. Instrumentation

The solvents and reagents were purchased from commercial sources, being used with-
out further purification. The melting point (uncorrected) of compound 3 was determined
using an open capillary tubes introduced in a MEL-TEMP Electrothermal apparatus. The
nuclear magnetic resonance experiments have been recorded on a Bruker AVANCE III
500 MHz spectrometer (Iasi, Romania), equipped with a 5 mm PABBO detection probe,
operating at 500.19 and 125.7 MHz for 1H and respectively 13C nuclei. In 1H and 13C
spectra, chemical shifts are reported in δ units (ppm) relative to the residual peak of solvent
(ref: DMSO-d6, 1H: 2.50 ppm; 13C: 39.52 ppm). The coupling constants (J) are given in Hz.
In the NMR spectra to appointed the multiplicity of signals, were used the abbreviations:
s = singlet, d = doublet, t = triplet. The microanalyses were in satisfactory agreement with
the calculated values: C, ±0.15; H, ±0.10; N, ±0.30.

3.2. General Procedure for Synthesis of Hybrid Quaternary Salt 3

To a solution of 2,6-bis((1H-imidazol-1-yl)methyl)pyridine 1 (1 mmol, 1 equiv., 0.24 g,
dissolved in 40 mL acetone using the ultrasound bath) was added dropwise a solution
of 9-(chloromethyl)anthracene 2 (2.8 mmol, 2.8 equiv., 0.63 g, dissolved in 15 mL acetone
using the ultrasound bath). The reaction mixture was refluxed for 12 h, and stirred at
room temperature for another 24 h to give the corresponding hybrid quaternary salt 3.
The completion of the reaction was carried out using TLC. The obtained salt was filtered
off, washed two times with the same solvent (10 mL) and dried in vacuum. No other
purification required.
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1,1′-(pyridine-2,6-diylbis(methylene))bis(3-(anthracen-9-ylmethyl)-1H-imidazol-3-ium) chloride

(3): Light brown powder. mp 223–224 ◦C. 1H-NMR (500 MHz, DMSO-d6) (ppm): 9.06

(s, 2H, 2×H2′ ), 8.76 (s, 2H, 2×H12′ ), 8.43 (d, 4H, J = 9.0 Hz, 2×(H8′ ,H16′ )), 8.15 (d, 4H,

J = 8.5 Hz, 2×(H11′ ,H13′ )), 8.85 (t, 1H, J = 8.0 Hz, H4), 7.75 (t, 4H, J = 8.5 Hz, J = 7.0 Hz,

2×(H9′ ,H15′ )), 7.56 (t, 4H, J = 8.0 Hz, J = 7.0 Hz, 2×(H10′ ,H14′ )), 7.41 (d, 4H, J = 9.0 Hz,

2×(H4′ ,H5′ )), 7.27 (d, 2H, J = 8.0 Hz, 2×H3), 6.48 (s, 4H, 2×(–CH2–)6′ ), 5.29 (s, 4H,

2×(–CH2–)5). 13C-NMR (125 MHz, DMSO-d6) (ppm): 153.5 (2×C2), 138.8 (C4), 136.5

(2×C2′ ), 131.0 (2×(C11′a,C12′a)), 130.6 (2×(C7′a,C16′a)), 130.1 (2×C12′ ), 129.3 (2×(C11′ ,C13′ )),

127.7 (2×(C9′ ,C15′ )), 125.5 (2×(C10′ ,C14′ )), 123.6 (2×C7′ ), 123.5 (2×(C8′ ,C16′ )), 123.1 (2×C4′ ),

122.1 (2×C5′ ), 122.0 (2×C3), 52.5 (2×(–CH2–)5), 44.9 (2×(–CH2–)6′ ). Anal. Calcd. for

C43H35Cl2N5 C, 74.56; H, 5.09; N, 10.11. Found C, 74.66; H, 5.19; N, 10.01.

3.3. General Procedure for NMR Studies
3.3.1. Dimer Generation 6

To 400 µL (2.5 × 10−3 M) solution in DMSO-d6 of hybrid quaternary salt 3 was added
25 µL (2 × 10−3 M) solution in D2O of K2CO3 and also 5 µL (2.5 × 10−1 M) solution of
K2CO3. It was observed that the solution become pale pink when adding the base (K2CO3).
After the preparation of the solution, the NMR spectra were registered and the existence of
the dimer 6 was highlighted.

Weak pink solution. 1H-NMR (500 MHz, DMSO-d6) (ppm): 8.56 (s, 4H, 4×H12′ ),
8.23 (d, 8H, J = 8.5 Hz, 4×(H8′ ,H16′ )), 8.00 (d, 8H, J = 8.0 Hz, 4×(H11′ ,H13′ )), 7.79 (t, 2H,
J = 8.0 Hz, 2×H4), 7.58 (t, 12H, J = 7.0 Hz, J = 7.5 Hz, 4×(H9′ ,H15′ ,H4′ )), 7.48 (t, 12H,
J = 7.0 Hz, J = 8.0 Hz, 4×(H10′ ,H14′ ,H5′ )), 7.29 (d, 4H, J = 7.5 Hz, 4×H3), 6.30 (s, 8H,
4×(–CH2–)5). 13C-NMR (125 MHz, DMSO-d6) (ppm): 157.7 (4×C2′ ), 153.5 (4×C2), 139.2
(2×C4), 131.2 (4×(C11′a,C12′a)), 130.8 (4×(C7′a,C16′a)), 130.5 (4×C12′ ), 129.7 (4×(C11′ ,C13′ )),
128.2 (4×(C4′ ,C9′ ,C15′ )), 127.5 (4×C1”), 125.9 (4×(C5′ ,C10′ ,C14′ )), 123.4 (4×(C7′ ,C8′ ,C16′ )),
122.3 (4×C3), 45.9 (4×(–CH2–)5).

3.3.2. Dimer Complex with Zn2+ 7

To the solution of generated dimer 6 (400 µL (2.5 × 10−3M) salt 3, 25 µL (2 × 10−3M)
K2CO3, 5 µL (2.5 × 10−1 M) K2CO3) was added 100 µL (1.25 × 10−2 M) solution in D2O of
Zn(CH3COO)2 × 2H2O, when the solution becomes poorly colored. After the preparation
of the solution, the NMR spectra were recorded and the complex formation with zinc ions
was evidenced.

Poorly colored solution. 1H-NMR (500 MHz, DMSO-d6) (ppm): 8.31 (s, 4H, 4×H12′ ),
8.02 (d, 8H, J = 8.5 Hz, 4×(H8′ ,H16′ )), 7.84 (d, 8H, J = 8.5 Hz, 4×(H11′ ,H13′ )), 7.76 (t,
2H, J = 8.0 Hz, 2×H4), 7.51 (t, 12H, J = 7.0 Hz, J = 8.5 Hz, 4×(H9′ ,H15′ ,H4′ )), 7.41 (t, 12H,
J = 7.5 Hz, 4×(H10′ ,H14′ ,H5′ )), 7.30 (d, 4H, J = 8.0 Hz, 4×H3), 6.11 (s, 8H,
4×(–CH2–)5). 13C-NMR (125 MHz, DMSO-d6) (ppm): 177.5 (4×C2′ ), 153.6 (4×C2), 139.9
(2×C4), 131.6 (4×(C11′a,C12′a)), 131.3 (4×C1′’), 131.2 (4×C12′ ), 130.3 (4×(C11′ ,C13′ )), 129.0
(4×(C4′ ,C9′ ,C15′ )), 126.5 (4×(C5′ ,C10′ ,C14′ )), 123.6 (4×(C8′ ,C16′ )), 123.3 (4×C7′ ), 123.1 (4×C3),
45.6 (4×(–CH2–)5).
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