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Abstract: Imidazole-containing chalcones have been shown to be strongly effective against As-
pergillus fumigatus, the causative agent for the disease pulmonary aspergillosis. Claisen–Schmidt
condensation of 4-(1H-imidazol-1-yl)benzaldehyde with 4′-methylacetophenone using aqueous
sodium hydroxide in methanol yielded the novel compound (E)-3-[4-(1H-imidazol-1-yl)phenyl]-1-(4-
methylphenyl)prop-2-en-1-one in good yield and purity after recrystallization from hot methanol.
With the known antifungal properties of these combined pharmacophores, this novel compound is
suitable for anti-aspergillus activity study.

Keywords: chalcone; synthesis; aldol; pulmonary aspergillosis; imidazole

1. Introduction

Pulmonary aspergillosis (PA) is a spectrum of respiratory diseases that can range
from mild to fatal depending on the state of an individual’s immune system [1]. Milder
manifestations of PA include allergic bronchopulmonary aspergillosis (ABPA), and chronic
pulmonary aspergillosis (CPA). These milder forms tend to cause fatigue, difficulty breath-
ing, and hemoptysis [2], while its most lethal diagnosis, invasive aspergillosis (IA), can
cause respiratory failure, neurological conditions, and multiorgan failure, depending on
where the infection spreads [2]. Named after its infectious agent, the disease stems from
the inhalation of conidia of the fungus genus Aspergillus.

Aspergillus species are ubiquitous saprophytes and typically inhabit the soil where
they recycle essential nutrients from the soil. Aspergillus’ omnipresence is attributed to
its asexual spores called conidia. The conidia are easily propagated, so much so that
Aspergillus DNA is often found in the lungs of healthy adults [3]. Pulmonary aspergillosis
only manifests if the individual who inhales the conidia is immunocompromised [1].

Typically, in the non-immunocompromised host, invasion of Aspergillus conidia into
the bronchioles and alveoli is eliminated by macrophages and neutrophils [1–4]. Individ-
uals with conditions that compromise these components of the immune system are the
most at risk for developing pulmonary aspergillosis. The mortality rate for these indi-
viduals ranges from 20% to 90% [1–6], and Bongomin et al. has postulated that there are
roughly 3 million cases of CPA worldwide every year. These numbers will only continue
to grow if factors such as limited drug therapies, antifungal resistant strains [7,8], and the
influx of individuals with compromised immune systems continue. In addition, recent
literature illustrates respiratory viruses such as influenza and coronavirus disease 2019
(COVID-19) have led to new classifications of pulmonary aspergillosis, making matters
more urgent [9–12].

These classifications are especially disconcerting because they expand the current
demographic beyond the immunocompromised. Furthermore, influenza associated as-
pergillosis (IAA) and COVID-19 associated pulmonary aspergillosis (CAPA) are associated
with higher mortality rates and more complications than their counterparts without these
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co-infections [9,10]. There seems to be an appreciable prevalence of CAPA (20–30%), espe-
cially in mechanically ventilated or severely ill individuals [11]. In particular, one study
discovered co-infections of Aspergillus in 26% of those with severe ammonia and 40% in
those with acute respiratory distress syndrome engendered by COVID-19 [12]. These fac-
tors demonstrate that it is imperative to discover new treatments for the evolving disease
pulmonary aspergillosis.

Fortunately, pharmacophores like chalcone and imidazoles have shown a wide range
of biological activities. These pharmacophores share many pharmacological effects such
as anti-inflammatory, antibacterial, anticancer, and antimicrobial activity [13–16]. Recent
literature has illustrated that these two pharmacophores in conjunction show potential as
an antifungal agent [17,18]. We seek to synthesize similar novel imidazole chalcones as
potential treatments for pulmonary aspergillosis.

2. Results

(E)-3-[4-(1H-Imidazol-1-yl)phenyl]-1-(4-methylphenyl)prop-2-en-1-one 3 was synthe-
sized via a Claisen–Schmidt condensation (Scheme 1). The reaction was performed by
adding 4-(1H-Imidazol-1-yl)benzaldehyde 1, 4′-methylacetophenone 2, and methanol to a
round bottom flask at room temperature. Aqueous NaOH was added and allowed to stir
for 2 h. The crude product was recrystallized in hot methanol resulting in a yield of 75%.
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Scheme 1. Claisen-Schmidt condensation to form chalcone 3.

3. Discussion

The purified compound exhibited spectroscopic signals that confirmed the success-
ful synthesis of chalcone 3. Using Figure 1 as reference, the 1H-NMR spectrum shows
notable confirmatory assignments such as the trans vinylic hydrogens H6 and H7, which
were the only two doublets with an integration of one hydrogen. The J value of 15.7 Hz
represents the trans alkene geometry. A noteworthy substantiating 13C-NMR signal is
the α,β-unsaturated carbonyl peak (C10) at 189.7 ppm being more upfield than a non-
conjugated ketone carbonyl. HSQC was then used to assign all carbons bearing protons.
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Figure 1. NMR assignment of chalcone 3.

Assignments from the 1H-NMR and 13C-NMR that were validated by the HSQC
were utilized in the HMBC to corroborate other assignments by analyzing the 2J/3J cross
peaks. For example, C14 (144.1 ppm) and C13 (129.6 ppm) were verified by their 2J/3J
cross peaks with the methyl hydrogens (H10). Additionally, from the carbonyl carbon
(C10), cross peaks to H8 (7.98 ppm), H7 (7.54 ppm), and H6 (7.79 ppm) assignments were
further established. Chemical shifts of the protons and carbons also were in agreement
with predicted anisotropic and resonance effects. The aforementioned signals could then
be used to substantiate other signals until all assignments were verified. FT-IR exhibited a
sharp carbonyl stretch at 1660 cm−1, which is indicative of an α,β-unsaturated carbonyl.
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High resolution mass spectrometry analysis found an M+ ion at 288.12531 m/z compared
to a calculated mass of 288.12626.

4. Materials and Methods

All chemicals, reagents, and solvents used were obtained from commercial sources
(Sigma Aldrich, St. Louis, MO, USA and Fisher Scientific, Waltham, MA, USA) and used
without further purification. Thin layer chromatography (TLC) was used to monitor
reactions and performed using aluminum sheets pre-coated silica gel 60 (HF254, Merck,
Waltham, MA, USA), and visualized with UV radiation (Fisher Scientific, Waltham, MA,
USA). The product was characterized by 1H-NMR, 13C-NMR, HSQC and HMBC NMR, IR,
HRMS, and melting point analysis. Spectra can be found in the supplementary information.

IR spectra were recorded on a ThermoFisher iS5 FT-IR. Melting point was determined
in open capillaries using a Stuart SMP3 melting point apparatus. 1H and 13C-NMR spectra
were collected using a 500 MHz Bruker AV-500 NMR spectrometer. HSQC and HMBC
were collected using a 600 MHz Agilent DD2 600 MHz NMR spectrometer. Spectra were
referenced to residual CHCl3. Chemical shifts were quoted in ppm and coupling constants
(J) were recorded in hertz (Hz). High resolution mass spectrum was acquired using an
Agilent Technologies Series 6200 TOF spectrometer.

A solution of aqueous NaOH (0.25 mL, 3.75 mmol, 15 M) was added to a round
bottom flask containing 4-(1H-imidazol-1-yl)benzaldehyde 1 (0.430 g, 2.50 mmol), 4′-
methylacetophenone 2 (0.335 g, 2.50 mmol), and methanol (7.5 mL). The mixture was
stirred at room temperature for 2 h (monitored by TLC in 5% dichloromethane/hexanes
and visualized with UV radiation) during which a yellow-white precipitate formed. The
mixture was diluted with water (10 mL) then cooled to 0 ◦C, and collected in vacuo, washed
twice with an ice-cold solution of 10% methanol/H2O (5 mL portions). The crude product
was purified by recrystallization from hot methanol to yield pure chalcone 3 as light yellow
crystals (0.543 g, 1.88 mmol, 75%).

(E)-3-[4-(1H-Imidazol-1-yl)phenyl]-1-(4-methylphenyl)prop-2-en-1-one (3): mp 171–172 ◦C;
1H-NMR (CDCl3, 500 MHz): 7.93 ppm (2H, d, J = 8.2 Hz, H8), 7.90 ppm (1H, s, H1),
7.79 ppm (1H, d, J = 15.7 Hz, H6), 7.73 ppm (2H, d, J = 8.5 Hz, H5), 7.54 ppm (1H, d,
J = 15.7 Hz, H7), 7.43 ppm (2H, d, J = 8.6 Hz, H4), 7.30 ppm (2H, d, J = 8.4 Hz, H9),
7.30 ppm (1H, s, H2), 7.22 ppm (1H, s, H3), 2.42 ppm (3H, s, H10); 13C-NMR (CDCl3,
125 MHz): 186.7 ppm (C10), 144.1 ppm (C14), 142.7 ppm (C8), 138.7 ppm (C4), 135.6 ppm
(C11), 135.5 ppm (C1), 134.4 ppm (C7), 131.0 ppm (C3), 130.1 ppm (C6), 129.6 ppm (C13),
128.8 ppm (C12), 122.9 ppm (C9), 121.6 ppm (C5), 118.0 ppm (C2), 21.8 ppm (C15); FT-
IR (KBr) 3167 cm−1 (C-HAr), 3117 cm−1 (C-HAr), 3041 cm−1 (C-HAr), 1660 cm−1 (C=O),
1597 cm−1 (C=C), 1518 cm−1 (C=C); HRMS m/z calc for C19H16N2O is 288.12626; found
288.12531.

Supplementary Materials: The following are available online: Copies of the 1H, 13C-NMR, HSQC,
HMBC, IR, and HRMS spectra.
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