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Abstract: In a high-yielding and solvent-free procedure N-ethoxycarbonyl protectedω-amino-β-keto
anilides undergo Knorr cyclisation in neat polyphosphoric acid to provide straightforward route to
4-aminoalkyl quinolin-2-one derivatives with variable length of the alkyl chain.
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1. Introduction

The quinoline ring system is present in a vast number of natural [1,2] and syn-
thetic [3,4] organic compounds with valuable properties. Among this large group, the
subclass of quinolin-2-ones (also known as carbostyrils) stands out with many bioactive
structures [5]. For example, the quinolin-2-one fragment is found in alkaloids such as
Viridicatins [6–9], Aflaquinolones [10] and Yaequinolones [11], as well as in synthetic
drug candidates with anti-inflammatory [12,13] and antibacterial [14] properties. The
construction of the quinolin-2-one ring system is most commonly achieved via the clas-
sic Knorr cyclisation of β-keto anilides in acidic media [15,16]. The mechanism of this
reaction has been studied in detail [17] and also an alternative approach based on N-aryl
amides of 3-arylpropynoic acids has been developed [18]. In addition to this classical
method, the scope of which is limited in the presence of acid-sensitive functionalities,
there have been many recent developments. The modern approaches include Pd-catalysed
formation of C-C or C-N bonds in the ring system [19–21], Pd-catalyzed synthesis from
quinoline N-oxides and azodicarboxylates [22], Co-catalyzed cyclization of α-bromo-N-
phenylacetamides [23], Intermolecular addition/cyclization of carbamoyl radicals under
photoredox [24] or Ag [25] catalysis, hypervalent iodine(III)-mediated decarboxylative
cyclization [26] and chemoenzymatic approaches [27,28].

Quinolin-2-ones with aminoalkyl substituent at position 4 are interesting as building
blocks for complex natural products [29,30] and also in their own right as bioactive sub-
stances [12–14]. To date, all instances of these molecules in the literature are synthesised
by either SN2 amination of the corresponding 4-halogenoalkyl derivatives [12,13,31,32]
or hydrogenation of the corresponding 4-cyano derivatives [14]–approaches that work
mostly for the preparation of 4-aminomethyl derivatives and are not well suited for deriva-
tives with a longer carbon chain between the amino functionality and the quinolin-2-one
core. In this communication, we demonstrate that the Knorr reaction can be successfully
carried out with N-ethoxycarbonyl protected ω-amino-β-keto anilides, leading directly
to the corresponding 4-aminoalkyl quinolin-2-one derivatives with variable length of the
alkyl chain.

2. Results

The problematic accessibility of ω-amino-β-keto anilides (1) by known methods is
probably the main reason why these compounds have not been used as precursors to
quinolin-2-ones until now. However, since a method developed recently in our laboratory
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provided easy access to these substrates [33], we decided to investigate their behaviour
under Knorr-type conditions. After a quick screening of various acids and solvents, we
arrived at polyphosphoric acid (PPA) as the optimal medium for the targeted cycloconden-
sation of 1 to 4-aminoalkylquinolin-2-ones 2. The cyclisation of 1 to 2 (Scheme 1, Table 1)
proceeded for 90 min at 80 ◦C in neat PPA. The products 2 were isolated in 80–90% yield af-
ter easy workup, including only the addition of water to the reaction mixture and filtration
of the precipitated product or, optionally, extraction in CH2Cl2. Although the extractive
workup gave slightly cleaner products in case 2b and 2c, this synthesis could be carried
out as a completely solvent-free procedure, depending on the operator preferences.
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Scheme 1. Knorr cyclisation ofω-amino-β-keto anilides to 4-aminoalkylquinolin-2-ones.

Table 1. Yields of 4-aminoalkylquinolin-2-ones 2, prepared according to Scheme 1.

Product n Yield (%)

2a 1 90
2b 2 80
2c 3 85

3. Materials and Methods

The starting N-ethoxycarbonylω-amino-β-keto anilides (1) were prepared from the
correspondingω-amino acids and acetoacetanilide, according to our previously published
procedure [33]. Polyphosphoric acid (115% H3PO4 basis, CAS No. 8017-16-1) was pur-
chased from (Sigma-Aldrich, Darmstadt, Germany). NMR spectra were run on a Bruker
Avance AV600 (600/150 MHz 1H/13C) or Bruker DRX 250 (250/62.5 MHz 1H/13C) spec-
trometers at BAS-IOCCP—Sofia and chemical shifts (δ, ppm) are downfield from TMS. High
resolution mass spectral measurements were performed on a Thermo Scientific Q Exactive
hybrid quadrupole-orbitrap mass spectrometer. TLC was conducted on aluminium-backed
Silica gel 60 sheets (Merck) with KMnO4 staining; Melting points were measured on Boetius
hot stage apparatus and are not corrected.

Synthetic Procedure

4-aminoalkyl quinolin-2-ones (2a–c), general procedure: To the corresponding β-keto anilide
1a–c (200 mg) in a glass vial was added PPA (5–6 g, 2.5–3 mL). The mixture was heated to
80 ◦C and was stirred intensely until full homogenization (ca. 15–20 min). The homogenous
mixture was left for a further 90 min. at 80 oC, then the vial was cooled to r.t. with tap
water and the contents were rinsed and poured into a glass with 50–70 mL of water. The
isolation of the products 2a–c was conducted by filtration of the resulting suspension (2a)
or by extraction with 2 × 30 mL CH2Cl2 (2b, 2c). The yields of 2b and 2c were practically
unaffected by the type of workup procedure (filtration or extraction). For product 2a,
filtration is recommended because of its poor solubility in CH2Cl2.

(2-Oxo-1,2-dihydro-quinolin-4-ylmethyl)-carbamic acid ethyl ester (2a): m.p. 173–174 ◦C; 1H
NMR (DMSO-d6, δ ppm, J Hz): 1.19 (t, J = 7, 3H), 4.04 (q, J = 7, 2H), 4.42 (d, J = 5.9, 2H),
6.32 (s, 1H), 7.18–7.77 (m, 4H, ArH), 7.76 (br t, 1H, NH), 11.71 (br s, 1H, NH); 13C NMR
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(DMSO-d6, δ ppm): 15.1, 41.3, 60.6, 116.1, 118.1, 118.7, 122.2, 124.3, 130.9, 139.3, 148.9, 156.9,
162.1; HRMS (ES+): m/z [M + Na]+ calcd for C13H14N2NaO3

+: 269.0897, found: 269.0896;

[2-(2-Oxo-1,2-dihydro-quinolin-4-yl)-ethyl]-carbamic acid ethyl ester (2b): m.p. 185–186 ◦C; 1H
NMR (250 MHz, DMSO-d6, δ ppm, J Hz): 1.15 (t, 3H, J = 7), 2.95 (t, 2H, J = 7), 3.29 (m, 2H),
3.98 (q, 2H, J = 7), 6.36 (s, 1H), 7.17–7.84 (m, 5H) ArH +NH, 11.64 (s, 1H) NH; 13C NMR
(DMSO-d6, δ ppm): 161.51, 156.31, 148.74, 138.96, 130.16, 124.32, 121.68, 120.99, 118.80,
115.68, 59.60, 39.74, 31.82, 14.62; HRMS (ES+): m/z [M + Na]+ calcd for C14H16N2NaO3

+:
283.1053, found: 283.1055;

[3-(2-Oxo-1,2-dihydro-quinolin-4-yl)-propyl]-carbamic acid ethyl ester (2c): m.p. 116–118 ◦C; 1H
NMR (250 MHz, CDCl3, δ ppm, J Hz): 1.27 (t, 3H, J = 7), 1.97 (m, 2H), 2.94 (t, 2H, J = 8), 3.34
(m, 2H), 4.15 (q, 2H, J = 7), 4.98 (br s, 1H) NH, 6.66 (s, 1H), 7.23–7.74 (m, 4H) ArH, 12.67
(br s, 1H) NH; 13C NMR (DMSO-d6, δ ppm): 164.12, 156.85, 152.89, 138.42, 130.69, 124.02,
122.87, 119.78, 119.04, 117.11, 60.90, 40.63, 29.40. 29.20, 14.66; HRMS (ES+): m/z [M + Na]+

calcd for C15H18N2NaO3
+: 297.1210, found: 297.1206.

Supplementary Materials: The following are available online, S1.PDF—processed 1H and 13C NMR
spectra. S2.zip—Raw NMR data, and mol files structure.
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