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Abstract: The intermolecular [2 + 2]-photocycloaddition of the parent flavone molecule (4) as the
triplet energy-accepting species and the electron-rich alkene 2, 3-dihydrofuran (5) was performed
by visible-light-mediated triplet-sensitization with an iridium-based organometallic sensitizer. The
reaction proceeds with high diastereo- and regioselectivity (>98:2 for the regiochemical orientation
and with 95% d.s.). In contrast to numerous other ene/enone combinations that are described in
the literature and were also performed by us, the reaction between 4 and 5 almost solely afforded
the cis-syn-cis cyclobutane 6, whereas analogous conjugated six- and five-membered cycloalkenones
preferentially react to cis-anti-cis cyclobutanes or a mixture of both diastereoisomers (e.g., for the
cyclohexanone-derived example 9).
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1. Introduction

The [π2 + π2]-photocycloaddition of two alkene (ene/ene, enone/enone or enone/ene
combinations) components with the formation of cyclobutanes is the prime example
for a basic photochemical reaction that has been studied extensively—and periodically
reviewed—over the last 60 years [1–4]. These cyclobutanes are interesting molecular
scaffolds that find application in natural product synthesis and as precursors for organic
synthesis. They are well suited for fragmentation or ring-enlargement reactions facilitated
by their high ring strain [5–10]. While earlier examples were mainly focused on direct
excitation of the substrates with highly energetic UV light [11–14], recent advances derived
milder approaches by irradiation with visible light [15–18]. Over the last two decades,
tremendous improvements on the field of enantioselective [2 + 2]-photocycloaddition
reactions emerged from the pioneering work of the research groups of Bach [19,20], Meg-
gers [21], Yoon [22,23] and others. The spin state of the electronically excited component
in these bimolecular processes is predominantly triplet, either from fast ISC out of the
initially formed singlet excited state or via triplet–triplet energy transfer. Our interest in
spin-selective processes and the consequences of spin state on the regio- and diastereose-
lectvity initiated a systematic study on the donor/acceptor enone/ene (1/2) -combinations
in intermolecular photocycloadditions [24] (Scheme 1).
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The non-symmetric enone/ene substrates 1 and 2 can combine in a 1,2- or 1,3-
regioisomeric fashion and with formation of four stereogenic centers, resulting in a maxi-
mum of 16 possible cyclobutane isomers with eight diastereoisomers of 31,2 and 31,3. Due
to the fact that the triplet [2 + 2]-photocycloaddition cannot proceed in a concerted fashion,
the two carbon–carbon bond-forming steps are separated in time and the selectivity-
determining steps are also separated: (a) the regioselectivity is determined by the triplet
biradical stability; at least numerous examples imply this relationship, (b) the diastereos-
electivity of the first C-C-bond formation is determined by Csp2-Csp2-overlap geometry
and often follows well-known ground-state rules, (c) the diastereoselectivity for the second
C-C-bond (finishing the cyclobutane formation) is determined by optimal triplet biradical
intersystem-crossing geometries, mostly the best geometries for large spin-orbit-couplings
(SOC-geometries) [25].

One specific naturally occurring cyclic enone structure is 2-phenylchromen-4-one,
the basic flavone molecule. Flavonoids are important biomaterials that are commonly
found in nature as pigments in plants. The field of application is broad, from nutrition,
pharmaceuticals to the application in cosmetics. Their medicinal properties include anti-
oxidative, anti-inflammatory, anti-mutagenic and anti-carcinogenic activity [26–29]. Due to
their highly conjugated π-system, these molecules are well suited chromophores that have
been investigated in several photophysical and –chemical studies and assimilate cyclic
chalcone derivatives [30–32]. Flavone (4) is such an example from which excitation occurs
at λmax = 365 nm with quantum yields for ISC close to unity (ΦISC = 0.9) to its triplet state
by a π,π*-transition (ET = 2.69 eV, 3τ = 4.5 µs) [33,34]. Thus, direct excitation is possible with
UV-A radiation or purple light. On the other hand, triplet sensitization appears feasible
with diverse triplet sensitizers that absorb in the visible region and can be excited with
blue LEDs as the cheap and versatile state-of-the-art light sources.

2. Results

A mixture of acetonitrile and 2,3-dihydrofuran (5) was degassed with argon for 15 min
before the parent flavone, 2-phenylchromone 4, was added (Scheme 2). This resulted in an
initial concentration of 83 mM for 4 and 0.83 M for 5. After addition of the iridium-based
photocatalyst Ir-F ([Ir(dF(CF3)2(ppy)2(dtbpy)]PF6) [35], a catalyst concentration of 0.83 mM
resulted. The solution was irradiated with blue light LEDs with an emission maximum
around 455 nm for one day. The analysis of the crude reaction mixture indicated the
formation of only one regioisomer as a mixture of two diastereoisomers in a 95:5 ratio.
Determination of the configuration was performed by NOESY-NMR experiments from
the three cyclobutane protons. The formation of the syn-isomer can be easily determined
from the 1H-NMR spectrum by a characteristic doublet of doublets (dd) of the α-oxygen
proton with a 3JH,H coupling constant of 5.7 Hz to the adjacent proton and a 4JH,H coupling
constant of 1.7 Hz to the α-ketone proton. The structure could further be verified from
crystallization and X-ray diffraction analysis of the major cycloaddition product 6 (Figure 1
and Supplementary Materials).
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3. Discussion

Based on the photophysical and electrochemical properties of the photocatalyst
(ET = 2.58 eV) as well as the substrates, a photosensitized energy-transfer mechanism can
be anticipated. The triplet energy of flavone was reported between 2.7 and 2.8 eV [33,34], a
recent TT absorption study and computational investigation reported a value of 2.59 eV for
the lowest (ππ*) T1-state [36]. The energy difference between 4 and the photocatalyst is thus
approximately 0 to 4 kcal/mol and thus, isoenergetic or slightly endergonic energy transfer
can be expected. As already established for the well-known triplet–triplet energy transfer
processes with cis- and trans-stilbene, slightly endergonic energy transfer happens with still
high-rate constants between 108 and 109 M-s−1 [37]. The flavone/Ir(F) pair is one of these
examples that is expected to generate a vibrationally cold T1 state of the energy acceptor.

In contrast to the parent flavone, similar [2 + 2]-photocycloaddition reactions [24] only
resulted in the anti-isomer 9 from cyclohexanone 7 with high diastereo- and regioselectivity
(Scheme 3). Based on theories proposed in the literature [14,38], the syn-isomer should be
favored over the anti-isomer due to stronger orbital interaction in the succeeding electroni-
cally excited π-complex (exciplex). However, steric interactions were proposed to inhibit or
reduce the formation of syn-isomer, which were shown to result in an increased anti-fusion.
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Scheme 3. A comparable energy-transfer sensitized photocycloaddition of 3-phenylcyclohexenone
with 2,3-dihydrofuran [24].

In case of the parent flavone, the rigid structure would reduce these steric interactions
with the alkene and may, therefore, be responsible for the selectivity shift (Scheme 4). How-
ever, a different explanation may derive from the electronic contribution of the additional
oxygen of flavone in comparison to cyclohexanone 7. Hence, electrostatic interactions
could also be responsible for the preferred orientation of the substrates. Either way, these
observations may more likely indicate that the diastereoselectivity of the cycloaddition is
determined prior to the formation of the 1,4-biradical intermediate, i.e., in the initial triplet
exciplex. In summary, the reported reaction adds a new stereochemical feature to the broad
field of visible-light-induced [2 + 2]-cycloadditions [39].
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4. Materials and Methods
1H-NMR spectra were recorded on a Bruker Avance 500 spectrometer (Bruker, Ettlin-

gen, Germany) instruments operating at 500 MHz. Chemical shifts are reported as δ in
ppm and the coupling constants J in Hz units. In all spectra, the solvent peaks were used
as the internal standard. Solvents used were CDCl3 (δ = 7.26 ppm). Splitting patterns are
designated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad;
the 13C-NMR spectra were recorded on a Bruker Avance 500 spectrometer instrument
operating at 125 MHz. High-resolution mass spectra (HR-MS) were recorded on a LC/MS
LTW Orbitrap LX (Thermo Fischer Scientific, Waltham, MA, USA) and measured for the
molecular ion peak (M + H+ and M + Na+). GC-MS measurements were performed with a
Varian 4000 device (now Agilent) with helium as the carrier gas and a silica fused WCOT
column with a standardized method [50 ◦C (5 min), 20 ◦C/min→280 ◦C (18 min)]. IR
spectra were obtained on a Si crystal Fourier Transform spectrometer by Thermo Scientific
(Nicolet 380 FT-IR). Solvents for column chromatography were distilled prior to use (c-Hex,
EtOAc); acetonitrile was used in HPLC grade or higher. For photolysis, an LED PowerBar
(Osram, Munich, Germany) with 12 blue LEDs (Ptotal = 14 W, λem

max = 455 nm) was placed
horizontally to the middle of the reaction tube in a distance of 4 cm (±1 cm) to the sample.

Synthesis of 9a-phenyl-2,3,3a,3b,9a,9b-hexahydro-4H-furo[3’,2’:3,4]cyclobuta-[1,2-
b]chromen-4-one (6). A 10 mL Pyrex tube was charged with 5.62 mL acetonitrile and 0.38 mL
(5.0 mmol, 10 eq.) of 2,3-dihydrofuran (5) and degassed with argon for at least 15 min.
111 mg (0.50 mmol, 1.0 eq.) flavone (4) and 5.6 mg (1 mol%) of [Ir(dF(CF3)2(ppy)2(dtbpy)]PF6
were added, the tube sealed and irradiated with blue LEDs. After 25 h, the reaction mix-
ture was filtered directly over silica gel (EtOAc), the solvent removed under reduced
pressure and the crude mixture purified by flash column chromatography (SiO2, 10:1,
c-Hex:EtOAc) to afford the cyclobutane 6 in 66% as a colourless solid, m.p. 97–101 ◦C.
1H-NMR (500 MHz, CDCl3): δ [ppm] = 7.84 (dd, J = 7.9 Hz, 1.7 Hz, 1H, H-12), 7.56
(m, 2H, H-15), 7.49 (ddd, J = 8.7 Hz, 7.3 Hz, 1.8 Hz, 1H, H-10), 7.44 (m, 2H, H-16), 7.35
(m, 1H, H-17), 7.10 (d, J = 8.1 Hz, 1H, H-9), 6.99 (m, 1H, H-11), 4.79 (dd, J = 5.6 Hz, 1.7 Hz,
1H, H-6), 4.10 (td, J = 8.9 Hz, 2.6 Hz, 1H, H-5), 3.76 (m, 1H, H-5), 3.71 (m, 1H, H-2), 3.51
(m, 1H, H-3), 2.20 (m, 1H, H-4), 2.02 (m, 1H, H-4). 13C-NMR (125 MHz, CDCl3): δ [ppm] =
191.6 (s, C-1), 161.0 (s, C-8), 142.4 (s, C-14), 136.9 (d, C-10), 129.0 (d, C-16), 128.3 (d, C-17),
126.5 (d, C-12), 124.7 (d, C-15), 121.5 (d, C-11), 119.6 (s, C-13), 118.5 (d, C-9), 87.0 (d, C-6),
81.8 (s, C-7), 71.5 (t, C-5), 48.7 (d, C-2), 42.6 (d, C-3), 27.8 (t, C-4). ṽ [cm−1] = 3061 (w), 3036
(w), 2951 (w), 2891 (w), 2355 (w), 2338 (w), 1671 (m), 1654 (m), 1605 (m), 1577 (w), 1460
(s), 1374 (w), 1329 (m), 1300 (m), 1230 (m), 1120 (m), 1104 (m), 1029 (w), 957 (w), 760 (m),
698 (m). Calculated mass [M − H]+ = 293.1311722, [M-Na]+ = 315.09916, determined mass
[amu]: [M − H]+= 293.11690 [M − Na]+ = 315.09886. GC-MS (EI, 70 eV) = 224 (16), 223
(100), 194 (10), 92 (12), 77 (10), 63 (8).
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/M1256/s1. Figures S1–S8: Cycloadduct 6: X-ray ellipsoid picture, ball and stick picture,
1H-NMR, 13C-NMR, and IR spectra, MS analysis, Table S1: data for X-ray structure analysis [40].
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