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Abstract: An convenient one-pot approach for the synthesis of new (E)-2-(2-oxo-4-phenylbut-3-en-1-
yl)benzo[d]thiazole-3(2H)-carboxylates is demonstrated. The method is based on a three-component
reaction of benzylideneacetone with electrophilic N-alkoxycarbonylbenzothiazolium species formed
in situ. The newly synthesized compounds were fully characterized by 1D 1H, 13C- NMR, IR and MS.
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1. Introduction

Cancer is one of the most prevalent lethal diseases worldwide, and is a serious
concern of modern medicine. It is of great attention to the scientific community for
drug development and precision therapy [1,2]. Benzothiazole (BT) (1) is a privileged
heterocycle structure with significant pharmacological applications [3]. In this regard,
during the last ten years, the functionalization of BT scaffold has modulated a broad
range of anticancer activities [4–7]. The interest drawn by a BT moiety has led to the
preparation of many 2-substituted derivatives, with proven antiproliferative effects [8,9].
In this context, various (E)-2-benzothiazole hydrazones have been described as actual
active structures [10,11]. The α,β-unsaturated ketones are subject to scientific interest [12]
and are present in many bioactive heterocycle hybrids [13–15]. In a previously published
paper, we demonstrated the effective application of α-amidoalkylation for the synthesis
of 1,2,3-substituted benzimidazoles containing benzylidenacetonyl fragments [16]. One
of the obtained compounds (Figure 1) showed selective antiproliferative activity in vitro
against the human metastatic melanoma cells—inhibition by 93% after 96 h treatment
at 10−4 M [17]. Considering the existing interest in the structure–activity relationship of
various benzothiazoles, we saw an opportunity to apply this convenient approach for the
synthesis of some novel, structurally similar derivatives. In recent scientific research, we
successfully functionalized indole and some hydroxyarenes to 2-substituted benzothiazoles
with bioactive profiles [18,19].
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Figure 1. Benzylidenacetonyl substituted heterocyclic compounds. 
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Figure 1. Benzylidenacetonyl substituted heterocyclic compounds.

2. Results

Here, we report the investigations on the application of adducts obtained from ben-
zothiazole (1) with alkyl chloroformates (2) in a one-pot α-amidoalkylation reaction with
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benzylideneacetone (3). The above-mentioned adducts react successfully with the α,β-
unsaturated ketone to form products (4a,b, Scheme 1).
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The reaction conditions were optimized by varying the solvent, temperature, and
time (Table 1).

Table 1. The optimized reaction conditions and yields of products 4, prepared according to Scheme 1.

Product 4 R Time, h T, ◦C Yield, %

a −Et 80 25 50 70 *
b −Me 80 25 55 76 *

* Obtained with benzothiazole (2 mmol), alkyl chloroformates (2 mmol) and benzylidenacetone (1 mmol).

The three-component reactions were successfully completed under mild reaction
conditions for 5–80 h at room temperature. The reactions were initially carried out in
acetonitrile for 5 h at room temperature to result in products 4a and b with low yields (24%,
4a) and (28%, 4b). It was found that 1,2-dichloroethane performed better than acetonitrile
and led to a higher yield of products (4a,b, Table 1).

The best yields of products were obtained with twofold excess of benzothiazole and
alkyl chloroformates in 1,2-dichloroethane at 25 ◦C for 80 h (70%, 4a; 76%, 4b). Analytically
pure samples were isolated by column chromatography on silica, using a mixture of
petroleum/diethyl ether as eluents and the yields indicated in Table 1.

The 1H-NMR spectra of compounds (4a,b), indicated (E)-trans configuration, exhibit-
ing two characteristic doublets in the range of δ = 6.83–6.85, 7.64–7.70 ppm with coupling
constant (J = 16.4 Hz) for vinyl protons.

The resulting products were structurally characterized by 1H, 13C-NMR, IR, and MS
spectra (copies can be found via “Supplementary Materials” section).

3. Materials and Methods

All reagents and solvents were purchased from commercial suppliers (Sigma-Aldrich
or Merck) and were used without further purification. NMR spectra were run on a Bruker
Avance AV600 (600/150 MHz 1H/13C) spectrometer at BAS-IOCCP—Sofia, and chemical
shifts (δ, ppm) were downfield from TMS. To average out the rotamers observed, the
spectrum of compound (4a) was measured at 80 ◦C, as indicated in the text below. High-
resolution mass spectral measurements were performed on a Thermo Scientific Q Exactive
hybrid quadrupole-orbitrap mass spectrometer. IR spectra were measured on a VERTEX 70
FT-IR spectrometer (Bruker Optics, Germany). TLC was performed on aluminium-backed
silica gel 60 sheets (Merck) with cerium sulfate staining. Melting points were measured on
Boetius hot stage apparatus and were not corrected.

Synthetic Procedures

Synthesis of (E)-2-(2-oxo-4-phenylbut-3-en-1-yl)benzo[d]thiazole-3(2H)-carboxylates
(4a,b), general procedure: ethyl chlorofomate (0.217 g, 2 mmol, 0.19 mL) or methyl chloro-
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formate (0.189 g, 2 mmol, 0.16 mL) was added dropwise to a magnetically stirred solution
of benzothiazole (0.270 g, 2 mmol, 0.22 mL) in 1,2-dichloroethane (5 mL/mmol), fol-
lowed immediately by the benzylideneacetone (0.292 g, 2 mmol). The stirring was then
continued under the conditions indicated in Table 1. After completion of the reaction (mon-
itored by TLC), the mixture was transferred to a separatory funnel with dichloromethane
(10 mL/mmol) and consecutively washed with 50 mL water. For the reactions with ace-
tonitrile, we first proceeded with solvent evaporation under reduced pressure, before the
following work-up. The organic layer was dried (Na2SO4), and the crude mixture was
dry-loaded onto silica gel. The products were isolated by column chromatography on silica
gel with mixtures of petroleum/diethyl ether as the eluents and successfully crystallized.

Ethyl (E)-2-(2-oxo-4-phenylbut-3-en-1-yl)benzo[d]thiazole-3(2H)-carboxylate (4a):
white solid; isolated with petroleum/diethyl ether (8:1 increasing polarity to 4:1); Rf = 0.61
(petroleum:diethyl ether 2:1); yield:50%, 70%; mp: 85–87 ◦C.

Results of 1H-NMR (600 MHz, 80 ◦C, DMSO-d6, δ ppm): 1.29 (t, J = 7.0 Hz, 3H,
-COOCH2CH3), 3.37 (dd, 2J = 16.4 Hz, 3J = 4.7 Hz, 1H, -CH2-), 3.42 (dd, 2J = 16.4 Hz,
3J = 9.4 Hz, 1H, -CH2-), 4.22–4.30 (m, 2H, -COOCH2CH3), 6.14 (dd, 2J = 8.8 Hz, 3J = 4.7
Hz, 1H, -CH*), 6.83 (d, J = 16.4 Hz, 1H, -CH=CH-), 7.02 (t, J = 7.6 Hz, 1H, Ar), 7.13 (t,
J = 7 Hz, 1H, Ar), 7.25 (d, J = 7.6 Hz, 1H, Ar), 7.42–7.43 (m, 3H, Ar), 7.64 (d, J = 16.4 Hz, 1H,
-CH=CH-), 7.66–7.68 (m, 3H, Ar).

Results of 13C-NMR (150 MHz, 80 ◦C, DMSO-d6, δ ppm): 14.6 (-COOCH2CH3), 48.1
(-CH2), 62.1 (-CH*), 62.7 (-COOCH2CH3), 117.8 (-CH), 123.0 (-CH), 124.7 (-CH), 125.7 (-CH),
127.0 (-CH), 128.9 (-CH), 129.0 (-CH), 129.4 (-CH), 131.0 (-CH), 134.9 (-CH), 137.7 (-CH),
143.9 (-CH), 152.3 (-COO), 197.2 (-CO).

IR (KBr, cm−1): 3057 ν(C-sp2-H), 2980 νas(C-sp3-H, > sp2), 2911 νs(C-sp3-H, > sp2),
1700 ν(C=O, α,β-unsaturated ketone), 1653 ν(C=O, ester), 1580, 1471 ν(C=C, Ph), 1377
δs(CH3), 1256, 1183 ν(C-N), 752 γ(C-sp2-H), 692, 580, 459 δ(C-N-C);

HRMS m/z (ESI): calcd for C20H19NNaO3S+ [M + Na]+ 376.0978, found 376.0988;
calcd for C40H38N2NaO6S2

+ [2M + Na]+ 729.2063, found 729.2057.
Methyl (E)-2-(2-oxo-4-phenylbut-3-en-1-yl)benzo[d]thiazole-3(2H)-carboxylate (4b):

pale yellow solid; isolated with petroleum/diethyl ether (8:1 increasing polarity to 4:1);
Rf = 0.48 (petroleum:diethyl ether 2:1); yield: 55%, 76%; mp: 136–137 ◦C.

Results of 1H-NMR (600 MHz, 20 ◦C, DMSO-d6, δ ppm): 3.40 (dd, 2J = 17.6 Hz,
3J = 3.5 Hz, 1H, -CH2-), 3.49 (dd, 2J = 17.6 Hz, 3J = 10.0 Hz, 1H, -CH2-), 3.78 (s, 3H,
-COOCH3), 6.08 (dd, 2J = 10 Hz, 3J = 3.5 Hz, 1H, -CH*), 6.85 (d, J = 16.4 Hz, 1H, -CH=CH-),
7.03 (t, J = 7.6 Hz, 1H, Ar), 7.13 (t, J = 7.6 Hz, 1H, Ar), 7.27 (d, J = 7.6 Hz, 1H, Ar), 7.42–7.44
(m, 3H, Ar), 7.70 (d, J = 16.4 Hz, 1H, -CH=CH-), 7.69–7.71 (m, 3H, Ar).

Results of 13C-NMR (150 MHz, 20 ◦C, DMSO-d6, δ ppm): 47.5 (-CH2), 53.8 (-COOCH3),
61.9 (-CH*), 117.6 (-CH), 121.7 (-CH), 123.1 (-CH), 124.8 (-CH), 125.8 (-CH), 126.7 (-CH),
129.0 (-CH), 129.5 (-CH), 131.2 (-CH), 134.5 (-CH), 134.7 (-CH), 144.5 (-CH), 152.7 (-COO),
197.9 (-CO).

IR (KBr, cm−1): 3019 ν(C-sp2-H), 2958 νas(C-sp3-H, > sp2), 2900 νs(C-sp3-H, > sp2),
1717 ν(C=O, α,β-unsaturated ketone), 1649 ν(C=O, ester), 1576, 1474 ν(C=C, Ph), 1361
δs(CH3), 1259, 1181 ν(C-N), 759 γ(C-sp2-H), 684, 576, 433 δ(C-N-C).

HRMS m/z (ESI): calcd for C19H17NNaO3S+ [M + Na]+ 362.0821, found 362.0819;
calcd for C38H34N2NaO6S2

+ [2M + Na]+ 701.1750, found 701.1756.

4. Conclusions

We have successfully prepared two new 2-(benzylideneacetonyl)benzothiazoles via an
efficient one-pot approach. The applied three-component reactions offer several advantages,
such as a simple procedure, clean reaction conditions, and good yields. The obtained
compounds are of interest due to their potential cytotoxic activities.

Supplementary Materials: The following are available online, S1. PDF—processed 1H, 13C-NMR,
MS, IR spectra and TLC separation of (4a,b), S2.zip—Raw NMR data, S3.zip—mol files.
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