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Abstract: Imines are fundamental organic compounds used as synthetic intermediates and as ligands
in coordination chemistry. They are also found to be important pharmacophores in various bioactive
compounds. In this report, two Schiff bases were prepared using the traditional condensation
of 4-pyridinecarboxaldehyde with 2-thiophenemethylamine and 2-quinolinecarboxaldehyde with
furfurylamine to form (E)-1-(pyridin-4-yl)-N-(thiophen-2-ylmethyl)methanimine (L1) and (E)-N-
(furan-2-ylmethyl)-1-(quinolin-2-yl)methanimine (L2) respectively. L1 and L2 were complexed with
silver perchlorate in 2:1 [M:L] stoichiometry to obtain complexes 1 and 2, respectively. The crystal
structures of 1 and 2 were unequivocally determined by single-crystal X-ray diffraction analysis.
The resulting structures revealed 2 to be a four-coordinate as expected. In contrast, an unexpected
chemoselective hydrolytic cleavage of one mole of the (CH=N) imine ligands occurred in complex
2 and, further, the amines (thiophenemethylamine) homo-coupled to form a new imine ligand
derivative in situ (L1a) before coordinating to the Ag(I) center along with L1. This observation
described an alternative synthetic route to be explored to synthesize a diverse range of imine
derivatives, which involves the Ag(I)-promoted homo-coupling of amines. Herein, the crystal
structures of Ag(I) complexes of pyridinyl [Ag(L1)(L1a)]ClO4 (1) and quinolinyl [Ag(L2)2]ClO4

(2) Schiff bases are presented.
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1. Introduction

Schiff bases are one of the most widely used N-donor organic ligands. This can
be attributed to their facile synthesis, high stability and high solubility in most organic
solvents and their ability to coordinate to various transition metals and a wide range
of applications [1,2]. The preparation of Schiff bases can proceed by the condensation
reaction of carbonyl compounds with primary amines. Apart from the condensation
reaction commonly used in the synthesis of Schiff bases, other synthetic methods have been
reported, such as the reductive imination of nitro compounds [3], rebound hydrolysis [4],
hydroamination of alkynes with anilines [5], oxidative coupling of alcohols and amines [6]
and cross-coupling of amines [7,8].

An organic compound characterized by the presence of a pyridine or quinoline moiety
with azomethine linkage to O- or S-heterocycle has been reported to exhibit a broad range
of biological activities [9–11]. Their coordination to transition metals has been reported
to enhance their biological activities. In this study, crystal structures of Ag(I) perchlorate
complexes of pyridinyl (with thiophene moiety) and quinolinyl (with furan moiety) Schiff
bases are reported.
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2. Results

The unexpected thiophenemethylamine homo-coupling pyridinyl imine Ag(I) com-
plexes (1) and quinolinyl imine Ag(I) complexes (2) were prepared by reaction of either L1
or L2 with silver perchlorate in 2:1 (L:M) stoichiometry. The four-coordinate complex 2 was
isolated as proposed but in an attempt to complex L1 ((E)-1-(pyridin-4-yl)-N-(thiophen-2-
ylmethyl)methanimine) with silver perchlorate in 2:1 (L1:M), a chemoselective hydrolytic
cleavage of the (-CH=N) imine bond of one of the two ligands occurred. This is followed by
instant cross-coupling of the thiophene amines in the presence of a Ag(I) ion to form a new
imine ligand ((E)-1-(thiophen-2-yl)-N-(thiophen-2-ylmethyl)methanimine L1a). Afterward,
L1 and L1a coordinated to the Ag(I) ion leading to a linear Ag(I) complex (1). This method
of imine synthesis agrees with that from the literature [8], where transition metals act as a
catalyst during the formation of imine from amines. The possibility of imine metathesis
could be inconsequential since after the chemoselective hydrolytic cleavage of one molecule
of the (CH=N) imine ligands, there seem to be no exchange equilibria of the R groups
between the two molecules of the Schiff bases. The structures of 1 and 2 were confirmed by
NMR, FT-IR, UV-vis, Mass spec, elemental analysis and X-ray diffraction.

The 1H NMR spectrum of 1 exhibits two singlets assigned to imine (CH=N) protons at
8.63 and 8.54 ppm signifying their different resonance. The signal of the -CH2 protons for
the two ligands was seen as singlets at 4.91 and 5.01 ppm. The integration values and the
significant downfield shifts in the newly formed (L1a) imine proton, the CH2 protons and
the alpha proton on the pyridine ring relative to L1 resonance peaks (Figure S5) confirmed
the confirmed the mode of coordination in complex 1 to be via the pyridinyl (Npy) and
the imine nitrogen (Nim) atoms. In the 1H NMR spectrum of 2, the azomethine alpha
protons and the alpha proton on the quinoline ring shifted downfield relative to the free L2
resonance peaks (Figure S4). This confirmed the coordination of complex 2 to be via the Nim
and Nqy atoms in an N,N-bidentate manner. The coordination mode in complex 2 is similar
to the reported four coordinate Ag(I) complexes [12]. Electronic absorption spectra of the
complexes were recorded in acetonitrile at room temperature in the UV-Vis region. The
absorption spectra of 1 (Figure S1) showed two absorption bands at 292 nm and 365 nm and
red-shifted with respect to L1 absorption bands. These absorption bands are attributable
to π–π* and n–π* transitions of the imine and pyridine ring. In 2, only one absorption
band (Figure S2) at 313 nm assigned to π–π* transition was seen. Complex 2 red-shifted
with respect to its free ligand L2, similar to reported quinolinyl Ag(I) complexes [13]. In
the FT-IR spectroscopy study of 1 and 2 (Figures S13 and S14), a sharp absorption band
assigned to imines at 1609 cm−1 and 1620 cm−1 respectively, were observed. These imine
absorption bands shifted to lower frequencies with respect to their free ligands suggesting
the coordination of the free ligands to Ag(I) ion. The calculated molecular formula of
1 [C21H19AgN3S3]+ and 2 [C30H24AgN4O2]+ agreed with their found molecular ion peak
at m/z 518 and m/z 581 respectively obtained in the positive ion mode. The microanalyses
of 1 and 2 are in good accordance with the reported structures.

Crystal Structures

Crystals of 1 and 2 suitable for X-ray crystallography were obtained by diffusing
hexane into dichloromethane solutions of 1 to obtain a yellow block of 1, while for 2, slow
diffusion of toluene into dichloromethane solutions of 2 was done to obtain a brown needle
crystal. The asymmetric unit of 1 and 2 consist of a cationic complex bearing one Ag(I)
center and two imine ligand derivatives with one perchlorate counterion and a hydrate
molecule as shown in Figure 1. Complex 1 has a mixed ligand system which comprises of L1
and L1a. Furthermore, L1 and L1a coordinate to the Ag(I) center via the pyridinyl (Npy) and
the imine nitrogen (Nim) atoms, respectively. This results in a distorted linear geometry [14]
around the metal center with an Npy—Ag—Nim bond angle of 174.31(8)◦. Interestingly,
intramolecular Ag1 . . . S1 (3.2622(9) Å, symmetry code: x, y, z) and intermolecular Ag1
. . . S3 (3.169(1) Å, symmetry code: 1-x, 2-y,2-z) interactions were found to be shorter
than the sum of the van der Waals radii (3.52 Å) [15,16]. Unlike in 1, the Ag(I) center in
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2 is coordinated to two identical (E)-N-(furan-2-ylmethyl)-1-(quinolin-2-yl)methanimine
ligands which exhibit a κ2N,N’ coordination mode. The coordination environment around
the metal center is occupied by two quinolinyl nitrogen (Nqy) and Nim atoms from separate
ligands. Moreover, the τ4 value of complex 2 is equal to 0.83, indicating its distorted
trigonal pyramidal geometry [17] with N—Ag—N bond angles ranging between 99.46(7)◦

and 143.77(8)◦. Other selected bond parameters in 1 and 2 are listed in Table 1 and are
comparable with those of closely related compounds in the literature [18,19].
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Figure 1. The ORTEP diagrams of complexes 1 and 2 with the thermal ellipsoids drawn at the 50% probability level. The
hydrate molecule in 1 including all hydrogen atoms and perchlorate anions in both complexes have been omitted for clarity.

Table 1. Selected geometric parameters for complexes 1 and 2.

1 2

Ag—Npy 2.123(2)

Ag—Nqy
2.272(2)
2.377(2)

Ag—Nim 2.122(2) 2.377(3)
2.265(2)

Npy—Ag—Nim 174.31(8)

Nqy—Ag—Nim

143.77(8)
99.46(7)
72.06(7)
72.01(7)

3. Materials and Methods

Ethanol 99.5% (Aldrich, St. Louis, Missouri, MO, USA), diethyl ether 99.8% (Aldrich,
St. Louis, Missouri, MO, USA), DMSO-d6 99.8% (Merck, Darmstadt, Germany), 4-pyri-
dinecarboxaldehyde 99% (Aldrich, St. Louis, Missouri, MO, USA), 2-quinolinecarboxalde-
hyde 99% (Aldrich, St. Louis, Missouri, MO, USA), 2-thiophenemethylamine > 92%
(MerckDarmstadt, Germany), furan-2-ylmethanamine 99% (Aldrich, St. Louis, Missouri,
MO, USA), dichloromethane 99% (Aldrich, St. Louis, Missouri, MO, USA), and nitrogen
gas, 5.0 technical grade (Air flex Industrial Gases, Pietermaritzburg, Africa) were purchased
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from local suppliers. All chemicals were analytical grade and were used as received, while
most of the solvents were dried using conventional techniques.

1H NMR and 13C NMR spectra were recorded on a BRUKER 400 MHz spectrometer
in DMSO-d6 and acetone-d6. Chemical shift values are reported in parts per million (ppm)
relative to the solvent residual peaks in DMSO-d6 and acetone-d6; 2.5 and 2.05 ppm respec-
tively for 1H NMR and 39.5 and 29.4 ppm respectively for 13C NMR. The splitting patterns
in 1H NMR spectra are reported as s for singlet, d for doublet, m for multiplet and J (the cou-
pling constant is given in Hertz). The infrared spectra were recorded using a PerkinElmer
Spectrum 100 FT-IR spectrometer, and the data are reported as percentage transmittances at
the respective wavenumbers (cm−1), between 4000 and 650 cm−1. The mass spectra were
recorded using the Shimadzu LCMS-2020 instrument with only molecular ions (M+) and
major fragmentation peaks being reported with intensities quoted as percentages of the
base peak. Elemental analyses were performed on Thermal-Scientific Flash 2000 CHNS/O
analyzer. All melting points were determined using the Stuart Scientific melting point
apparatus.

3.1. Synthesis of Pyridinyl (L1) and Quinolinyl (L2) Schiff bases

Ligands (E)-1-(pyridin-4-yl)-N-(thiophen-2-ylmethyl)methanimine (L1) and (E)-N-
(furan-2-ylmethyl)-1-(quinolin-2-yl)methanimine (L2) (Scheme 1) were prepared using
similar methods reported by our group [20,21].
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Scheme 1. Synthesis of pyridinyl (L1) and quinolinyl (L2) Schiff bases.

Synthesis of L1: 4-pyridinecarboxaldehyde (1 mmol, 0.11 g, 0.09 mL) in anhydrous
ethanol (10 mL) was added slowly to a stirred hot solution of 2-thiophenemethylamine
(1 mmol, 0.11 g, 0.10 mL) in anhydrous ethanol (10 mL) in the presence of a few drops of
glacial acetic acid. The reacting mixture was reflux at 80 ◦C for 4 h. The resulting reaction
solution was dried over anhydrous MgSO4, filtered and concentrated under reduced
pressure. The yellow oil obtained was recrystallized from ethanol. Yield: 0.18 g, 89%,
1H-NMR (400 MHz, (CD3)2CO, δ ppm): 8.69 (2H, m, Hb-C5H4N), 8.48 (1H, s, Hc-CH=N-),
7.71 (2H, m, Ha-C5H4N), 7.36 (1H, s, Hg-C4H4S), 7.03 (1H, m, He-C4H4S), 7.00 (1H, m, Hf-
C4H4S), 5.03 (2H, s, Hd-CH2). 13C-NMR (100 MHz, (CD3)2CO, 25 ◦C): δ = 156.24 (C6-C=N-),
151.04 (C5-C5H4N), 150.02 (C2 & C3-C5H4N), 140.56 (C8- C4H3S), 127.22 (C10-C4H3S),
125.17 (C9- C4H3S), 124.87 (C11-C4H3S), 121.66 (C1 & C4-C5H4N), 58.96 (C7-CH2). FT-IR
(cm−1): (-C=N-) 1628, (pyridinyl) 1596, (CH2) 1411, (thiophene) 698. UV/Vis (CH3CN):
λmax 287, 363 nm. MS: m/z Calcd. For [C11H10N2S]: 202.28; found [3L1 + 3MeOH]+: 705
(100%), [L1]+ 203 (69%), [L1 + MeOH]+ 33%.
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Synthesis of L2: Ligand 2 was synthesized by the gradual addition of 2-quinoline-
carboxaldehyde (1 mmol, 0.16 g) dissolved in anhydrous ethanol (10 mL) to a solution
of furfurylamine (1 mmol, 0.10g, 0.09 mL), respectively, in anhydrous ethanol (10 mL)
in the presence of glacial acetic acid. The reactant mixture was subjected to constant
stirring at ambient temperature for 6 h. Afterward, the resulting solution was dried over
anhydrous MgSO4, filtered and concentrated under reduced pressure to obtain a yellow oil
product. The oil obtained was recrystallized from ethanol. Yield: 0.21 g, 88%, 1H-NMR
(400 MHz, (CD3)2CO, δ ppm): 8.57 (1H, d, J = 0.82 Hz, Hg-CH=N-), 8.37 (1H, d, J = 8.63 Hz,
Hd-C9H6N), 8.16 (1H, d, J = 8.55 Hz, Hd-C9H6N), 8.09 (1H, d, J = 9.56 Hz, Ha-C9H6N),
7.99 (1H, m, Hf-C9H6N), 7.80 (1H, m, Hb-C9H6N), 7.65 (1H, m, Hc-C9H6N), 7.53 (1H,
m, Hk-C4H3O), 6.41 (2H, m, Hj, i-C4H3O), 4.90 (2H, d, J = 1.31 Hz, Hh-CH2). 13C-NMR
(100 MHz, (CD3)2CO, 25 ◦C): δ = 153.70 (C9-C9H6N), 152.17 (C10-C=N-), 149.20 (C12-
C4H3O), 147.86 (C1-C9H6N), 142.26 (C15-C4H3O), 137.63 (C7-C9H6N), 130.92 (C6-C9H6N),
130.51 (C3-C9H6N), 129.66 (C2-C9H6N), 128.69 (C5-C9H6N), 128.22 (C4-C9H6N), 121.62
(C8-C9H6N), 110.97 (C14-C4H3O), 108.15 (C13-C4H3O), 48.88 (C11-CH2). FT-IR (cm−1):
(Ar-CH) 3055, (-C=N-) 1641, (quinolinyl) 1594, (CH2) 1425, (furan), 734. UV/Vis (CH3CN):
λmax 295 nm. MS: m/z Calcd. For [C15H12N2S]: 252.34; found [2L2 + CH3CN]+: 547 (100%),
[2L2 + Na + 2H)]+ 531 (36%), [L2 + 2CH3CN + Na + 2H] 360 (25%).

3.2. Synthesis of Pyridinyl and Quinolinyl Ag(I) Complexes

A slightly modified procedure from our group was also used [22,23] in the synthesis
of the Ag(I) complexes as shown in Scheme 2a,b.

Complex 1: L1 (5 mmol, 1.01 g) dissolved in anhydrous ethanol (15 mL) was added
dropwise to an ethanolic (15 mL) solution of silver perchlorate (2.5 mmol, 0.52 g) under
constant stirring in the dark. The reaction was carried out under nitrogen at ambient
temperature for 6 h. The resulting solid precipitate was isolated using a vacuum filter.
Afterwards, the precipitate was washed with cold ethanol (10 mL X2) followed by cold
ether (10 mL X2) and dried in vacuo. The yellow precipitate isolated was recrystallized by
diffusing hexane into dichloromethane solutions of the complexes to obtain a yellow block
crystal suitable for X-ray crystallography. Yield: 0.79 g, 52%, M.pt. 161–162 ◦C. 1H-NMR
(400 MHz, DMSO-d6, δ ppm): 8.69 (2H, m, Hb-C5H4N), 8.63 (1H, s, Hc-C=N), 8.54 (1H, s,
Hl-C=N), 7.75 (2H, m, Ha-C5H4N), 7.55 (1H, m, Hm-C4H3S), 7.43 (3H, m, Hg, h, o-C4H3S),
7.27 (3H, m, Hf, i, n-C4H3S), 7.02 (2H, m, He, j-C4H3S), 5.01 (2H, s, Hd-CH2), 4.91 (2H, s,
Hk-CH2). 13C-NMR (100 MHz, DMSO-d6, 25 ◦C): δ = 160.89 (C16-C=N-), 156.47 (C6-C=N-),
150.70 (C7-C5H4N), 150.12 (C10-C5H4N), 150.08 (C11-C5H4N), 139.05 (C4-C4H3S), 138.49
(C18-C4H3S), 127.97 (C14-C4H3S), 127.58 (C13-C4H3S), 127.02 (C20-C4H3S), 126.99 (C2-
C4H3S), 126.50 (C3 & C19-C4H3S), 125.99 (C12-C4H3S), 125.35 (C1 & C21-C4H3S), 125.33
(C15-C4H3S), 125.29 (C8 & C9-C5H4N), 58.40 (C5-CH2), 57.89 (C17-CH2). FT-IR (cm−1):
(pyridinyl) 1609, (-C=N) 1609, (CH2) 1424, (thiophene) 706. UV/Vis (CH3CN): λmax 292,
365 nm. MS: m/z Calcd. For [C21H19AgN3S3]: 517.45; found [Ag(L1)2 + 3CH3CN]+: 641
(100%). Anal. Calcd. (%) for [C21H19AgClN3O4S3]: C, 40.89; H, 3.10; N, 6.81; found (%): C,
40.72; H, 3.06; N, 6.75.

Complex 2: L2 (2 mmol, 0.51 g) dissolved in anhydrous ethanol (10 mL) was added
dropwise to an ethanolic (10 mL) solution of silver perchlorate (1 mmol, 0.21 g) under
constant stirring in the dark. The reaction was carried out under nitrogen at ambient
temperature for 6 h. A brown solid product was obtained and isolated using a vacuum
filter. Afterwards, the brown solid product was washed with cold ethanol twice followed by
cold ether (10 mL X2) and dried in vacuo. The brown solid was recrystallized by diffusing
toluene into dichloromethane solutions of the complexes to obtain a brown needle crystal
suitable for X-ray crystallography. Yield: 0.63 g, 93%, Melting point: 149–151 ◦C, 1H-NMR
(400 MHz, (CD3)2CO, δ ppm): 8.90 (2H, s, Hg-CH=N-), 8.70 (2H, d, J = 8.44 Hz, He-C9H6N),
8.11 (4H, m, Hd, a-C9H6N), 8.03 (2H, d, J = 8.63 Hz, Hf-C9H6N), 7.87 (2H, t, Hb-C9H6N),
7.74 (2H, t, Hc-C9H6N), 7.56 (2H, d, J = 1.13 Hz, Hk-C4H3O), 6.51 (2H, m, Hj-C4H3O), 6.45
(1H, m, Hi-C4H3O), 6.39 (1H, t, J = 2.47 Hz, Hi-C4H3O), 5.01 (2H, s, m, Hh-CH2), 4.08



Molbank 2021, 2021, M1235 6 of 9

(2H, s, Hh-CH2). 13C-NMR (100 MHz, (CD3)2CO, 25 ◦C): δ = 163.47 (C10-C=N-), 150.93
(C9-C9H6N), 149.98 (C12-C4H3O), 145.91 (C1-C9H6N), 143.09 (C15-C4H3O), 139.46 (C7-
C9H6N-), 131.67 (C6-C9H6N), 129.80 (C3-C9H6N), 129.31 (C2-C9H6N), 128.75 (C5-C9H6N),
128.34 (C4-C9H6N), 123.36 (C8-C9H6N), 110.63 (C14-C4H3O), 108.78 (C13-C4H3O), 55.82
(C11-CH2). FT-IR (cm−1): (-C=N-) 1620, (quinolinyl) 1586, (CH2) 1433, (furan) 752. UV/Vis
(CH3CN): λmax 313 nm. MS: m/z Calcd. for [C30H24AgN4O2]: 580.42; found [Ag(L2)2 +
2CH3CN + K]+: 705 (100%). Anal. Calcd. (%) for [C30H24AgClN4O6]: C, 53.00; H, 3.56; N,
8.24; found (%): C, 53.11; H, 3.32; N, 8.02.
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Scheme 2. (a) Synthesis of Ag(I) complex of imine derivatives (1); (b) Synthesis of Ag(I) complex of quinolinyl Schiff bases (2).

3.3. X-ray Crystallography

Crystal evaluation and data collection of the complexes 1 and 2 were recorded on a
Bruker Apex Duo diffractometer equipped with an Oxford Instruments Cryojet operating
at 100 (2) K and an Incoatec microsource operating at 30 W power. The data were collected
with Mo Kα (λ = 0.71073 Å) radiation at a crystal-to-detector distance of 50 mm using
omega and phi scans. The data were reduced with the program SAINT [24] using outlier
rejection, scan speed scaling, as well as standard Lorentz and polarization correction
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factors. A SADABS [25] semi-empirical multi-scan absorption correction was applied to
the data. The structures of complexes 1 and 2 were solved by the direct method using the
SHELXS [26] program and refined. The visual crystal structure information was performed
using ORTEP-3 [27], system software. Non-hydrogen atoms were first refined isotropically
and then by anisotropic refinement with a full-matrix least-squares method based on F2

using SHELXL [28]. All hydrogen atoms were positioned geometrically, allowed to ride
on their parent atoms, and refined isotropically. The crystallographic data and structure
refinement parameters of complexes 1 and 2 are given in Table 2. The two thiophenyl
rings in 1 were found to be disordered over two positions. PART instructions were used to
resolve the disorder, with the major components having 0.6 and 0.9 site occupancy factors.
In 2, the furanyl ring and the perchlorate anion exhibited disorder over two positions.
PART instructions were used to model the disorder and the major component had 0.722(8)
site occupancy factor.

Table 2. Crystal data and structure refinement for complexes 1 and 2.

1 2

Chemical formula C21H19.9AgClN3O4.13S3 C30H25AgClN4O6.25
Formula Weight 619.80 684.86
Crystal system Triclinic monoclinic

Space group P-1 C2/c
a(Å) 10.8978(5) 21.4229(10)
b(Å) 11.0223(5) 15.9905(10)
c(Å) 11.7827(5) 18.1880(9)
α(◦) 97.086(2) 90
β(◦) 116.347(4) 116.615(3)
γ(◦) 107.320(3) 90

V(Å3) 1155.54(10) 5570.3(5)
Z 2 8

ρcalc(gcm−3) 1.781 1.633
µ (mm−1) 1.295 0.873

F(000) 624.0 2776.0
Crystal size (mm3) 0.2 × 0.18 × 0.14 0.26 × 0.12 × 0.08

θ range for data collection (◦) 4.042 to 55.75 3.318 to 56.514

Index ranges
−14 ≤ h ≤ 14,
−14 ≤ k ≤ 8,
−15 ≤ l ≤ 15

−28 ≤ h ≤ 28,
−21 ≤ k ≤ 21,
−24 ≤ l ≤ 24

Reflections collected 20931 49838
Independent reflections 5488 [Rint = 0.0195, Rsigma = 0.0200] 6881 [Rint = 0.0297, Rsigma = 0.0176]

Completeness to theta = 28.96 99.5% 100.0%
Data / restraints / parameters 5488/198/379 6881/139/469

Goodness-of-fit on F2 1.050 1.053
R indices [I > 2sigma(I)] R1 = 0.0274, wR2 = 0.0668 R1 = 0.0323, wR2 = 0.0844

R indices (all data) R1 = 0.0303, wR2 = 0.0685 R1 = 0.0367, wR2 = 0.0876
Largest diff. peak and hole (e Å−3) 1.06 and −0.60 1.19 and −0.77

4. Conclusions

The conversion of amines to imines in the presence of Ag(I) ion as a catalyst, without
being under aerobic conditions or any other additives, has been demonstrated herein. The
homo-coupling of thiophene amines derived from the selective hydrolytic cleavage of an
imine bond to form a new imine yielded a linear Ag(I) complex of imine derivatives (1). In
complex 2, the quinolinyl Schiff base adopts a pseudo-trigonal pyramidal geometry around
the Ag(I) center. The spectroscopic data confirmed the structures of complexes 1 and 2.

The comparison of the crystal structures of 1 and 2 revealed their different structural
features. Interestingly, both complexes were prepared from silver perchlorate complexes of
either pyridinyl (L1) or quinolinyl (L2) Schiff bases, with each ligand having a methylene
linker to a five-member heterocyclic moiety. However, the conjugated ring and the position



Molbank 2021, 2021, M1235 8 of 9

of the N atom in 2 must have influenced its stability in the presence of the Ag(I) ion.
As such, L2 coordinated as expected in an N,N-bidentate manner (2). Considering the
cost-effectiveness of anilines and the availability of silver salts, this report has proven a
facile reaction route at ambient temperature and mild reaction conditions to explore the
synthesis of a diverse range of silver-promoted imine derivatives.

Supplementary Materials: The following are available online. Figures S1 and S2: Electronic absorp-
tion spectra of L1, L2, complexes 1 and 2, Figures S3–S6: 1H NMR spectra of L1 and L2 and 1 and 2,
Figures S3–S6: 13C NMR spectra of L1 and L2 and 1 and 2, Figures S7–S10: IR spectra of L1 and L2
and 1 and 2, Figure S11–S14: Mass Spec. spectra of L1 and L2 and 1 and 2: Figures S15–S18.
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