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Abstract: Treatment of a N-2-pyridyl-β-ketoamide precursor with bromine afforded the first example
of the 3-aryl(α-hydroxy)methylenelimidazo[1,2-a]pyridin-2(3H)-one framework. This transformation
proceeded through a domino process comprising an initial bromination, cyclization via an intramolec-
ular SN reaction, and a final keto-enol tautomerism, and allows generation of the fused heterocyclic
system and installation of the acyl substituent in a single operation.
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1. Introduction

Fused heterocyclic compounds bearing bridgehead nitrogen atoms are very relevant
in the construction of diversity-oriented libraries. Imidazo[1,2-a]pyridine is one of these
frameworks, and has shown great promise in the treatment of cancer due to the ability
of many of its derivatives to inhibit a variety of kinases [1,2]. Moreover, several drugs
currently in the market contain an imidazo[1,2-a]pyridine core, including the hypnotic
zolpidem [3], the anxyolitic alpidem [4], the gastroprotective drug zolimidine [5], and
the cardiotonic olprinone [6] (Figure 1). The importance of this ring system has led to
much interest in its synthesis [7] and functionalization [8]. Imidazo[1,2-a]pyridin-2(3H)-
one, one of its derivatives, is less well-known but has nevertheless shown some relevant
pharmacological activities [9].
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Figure 1. Structures of imidazo[1,2-a]pyridine, imidazo[1,2-a]pyridin-2(3H)-one and some relevant
imidazo[1,2-a]pyridines.

In spite of the potential importance of the imidazo[1,2-a]pyridin-2(3H)-one framework,
some of its derivatives have not been accessible to date. In particular, 3-acyl derivatives
have been prepared only in one occasion, by acylation of an imidazo[1,2-a]pyridin-1-ium
substrate (Scheme 1) [10]. This method yields compounds in mesoionic form, which was
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suitable for the purpose of the researchers, who aimed at the discovery of mesoionic
nicotinic acetylcholine antagonists acting as insecticides [11], but it lacks generality.
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lished by the absence of signals ascribable to a proton neighboring two carbonyls or its 
corresponding carbon and also to a ketone carbonyl, all of which would be expected from 
a dicarbonyl structure. On the other hand, an enol proton was observed at 12.28 ppm, and 
the presence of quaternary carbons at 104.7 (C-3) and 175.3 ppm (C-α), which showed a 
correlation with H-6′ in the HMBC experiment, also support the enol tautomeric form. 
The alternative lactim tautomer was discarded because of the absence of a ketone carbonyl 
at ca. 190 ppm. The presence of a doublet at ca. 9.9 ppm with coupling constant 7 Hz, 
assigned to H-5, can be ascribed to the influence of the diamagnetic anisotropy cone of the 
arylmethylene substituent on the H-5 proton, and confirms the (E) configuration of the 
double bond. The assignment of the 1H- and 13C-NMR data was aided by the 19F-13C cou-
plings, which allowed the unequivocal identification of the fluorophenyl ring carbons and 
also of the corresponding protons via H-C correlation 2D-NMR experiments (Supplemen-
tary Materials). Because H-5 had been assigned as described above, 2D-NMR data also 
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In this context, we describe here the synthesis of a representative of the 3-acylimidazo-
[1,2-a]pyridin-2(3H)-one class of compounds from very simple starting materials and
catalysts, using as the key step a domino reaction that generates the fused heterocyclic
system and installs the acyl substituent in a single operation.

2. Results and Discussion

The synthesis of our target compound 5 is summarized in Scheme 2. The starting ma-
terial 1, a derivative of ethyl 3-oxo-3-phenylpropanoate, was treated with 2-aminopyridine
in refluxing toluene containing acetic acid as catalyst to yield the β-ketoamide 3. Its halo-
genation with bromine in dichloromethane afforded 5 via a domino sequence of reactions
that comprised the initial halogenation of 3 at its central carbon, followed by cyclization by
intramolecular SN2 displacement of bromide anion and a final keto-enol tautomerism.
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Scheme 2. Synthesis of compound 5.

The enol structure of the imidazo[1,2-a]pyridin-2(3H)-one derivative 5 was established
by the absence of signals ascribable to a proton neighboring two carbonyls or its corre-
sponding carbon and also to a ketone carbonyl, all of which would be expected from a
dicarbonyl structure. On the other hand, an enol proton was observed at 12.28 ppm, and
the presence of quaternary carbons at 104.7 (C-3) and 175.3 ppm (C-α), which showed a
correlation with H-6′ in the HMBC experiment, also support the enol tautomeric form. The
alternative lactim tautomer was discarded because of the absence of a ketone carbonyl
at ca. 190 ppm. The presence of a doublet at ca. 9.9 ppm with coupling constant 7 Hz,
assigned to H-5, can be ascribed to the influence of the diamagnetic anisotropy cone of
the arylmethylene substituent on the H-5 proton, and confirms the (E) configuration of
the double bond. The assignment of the 1H- and 13C-NMR data was aided by the 19F-13C
couplings, which allowed the unequivocal identification of the fluorophenyl ring carbons
and also of the corresponding protons via H-C correlation 2D-NMR experiments (Supple-
mentary Materials). Because H-5 had been assigned as described above, 2D-NMR data
also enabled identification of the signals due to the H and C atoms at the 5, 6, 7, 8, and 8a
positions. Copies of NMR spectra can be found in the Supporting Information.
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3. Materials and Methods

General experimental information. All reagents (Sigma-Aldrich, Madrid, Spain; Fis-
cher Chemical, Madrid, Spain; Alpha Aesar, Kändel, Germany) and solvents (Scharlau,
Barcelona, Spain; Fischer Chemical, Madrid, Spain) were of commercial quality and were
used as received. Reactions were monitored by thin layer chromatography on aluminum
plates coated with silica gel and fluorescent indicator (Merck, Madrid, Spain) acherey-Nagel
Xtra SIL G/UV254. Melting points were determined using a Stuart Scientific apparatus,
SMP3 Model, and are uncorrected. Infrared spectra were recorded with an Agilent Cary630
FTIR spectrophotometer (Madrid, Spain) working by attenuated total reflection (ATR), with
a diamond accessory for solid and liquid samples. NMR spectroscopic data were recorded
using a Bruker Avance 250 spectrometer (Rivas-Vaciamadrid, Spain) operating at 250 MHz
for 1H-NMR and 63 MHz for 13C-NMR maintained by the NMR facility of Universidad
Complutense (CAI de Resonancia Magnética Nuclear, Madrid, Spain); chemical shifts
are given in ppm and coupling constants in Hertz. 1H- and 13C-NMR assignments were
supported by 2D-NMR experiments and are in agreement with simulations performed
with MestreNova and ChemDraw Pro. Elemental analyses were determined by the micro-
analysis facility of Universidad Complutense (CAI de Microanálisis Elemental, Madrid,
Spain), using a Leco 932 combustion microanalyzer.

3-(2-Fluorophenyl)-3-oxo-N-(pyridin-2-yl)propanamide (3). A solution of ethyl 3-(2-
fluorophenyl)-3-oxopropanoate (631 mg, 3.0 mmol), 2-aminopyridine (310 mg, 3.3 mmol),
and glacial acetic acid (0.3 mL) in toluene (7.5 mL) was heated under reflux with a Dean-
Stark trap for 12 h. After completion of the reaction (checked by TLC), the solvent was
evaporated under reduced pressure and the crude residue was purified by crystallization
from ethyl ether giving 3 as a yellow solid (745 mg, 96%) comprised of a mixture of
the β-ketoamide and its tautomeric enol form in a ratio of 1.4:1. MP: 142 ◦C. 1H-NMR
(250 MHz, DMSO-d6) δ 14.39 (s, 1H, enol), 10.88 (s, 1H, enol), 10.71 (s, 1H, β-ketoamide),
8.38–8.28 (m, 1H, enol + β-ketoamide), 8.14–8.02 (m, 1H, enol + β-ketoamide), 7.93–7.50
(m, 3H, enol + β-ketoamide), 7.44–7.29 (m, 2H, enol + β-ketoamide), 7.12 (m, 1H, enol
+ β-ketoamide), 6.27 (s, 1H, enol), 4.16 (s, 2H, β-ketoamide) ppm. 13C-NMR (63 MHz,
DMSO- d6) δ 192.13 (Cq), 192.08 (Cq), 171.29 (Cq), 166.18 (Cq), 164.93 (Cq), 163.30 (Cq),
161.91 (Cq), 159.25 (Cq), 157.89 (Cq), 151.87 (Cq), 151.52 (Cq), 148.21 (CH), 148.05 (CH),
138.30 (CH), 135.66 (CH), 135.51 (CH), 132.87 (CH), 132.73 (CH), 130.48 (CH), 130.45 (CH),
128.83 (CH), 128.80 (CH), 124.95 (CH), 124.90 (CH), 124.85 (CH), 124.69 (Cq), 121.79 (Cq),
121.63 (Cq), 119.74 (CH), 119.56 (CH), 117.15 (CH), 116.83 (CH), 116.79 (CH), 116.47 (CH),
114.24 (CH), 113.37 (CH), 95.05 (CH), 94.84 (CH), 51.78 (CH2), 51.68 (CH2). ESI-MS: [M]+

258. IR (neat, cm−1): 3184, 2986, 1629, 16191579, 1536, 1438, 1400, 1307, 1297, 1195, 775.
Elemental analysis calcd (%) for C14H11FN2O2: C, 65.11; H, 4.29; N, 10.85; found: C, 65.41;
H, 4.52; N, 11.02.

(E)-3-((2-Fluorophenyl)(hydroxy)methylene)imidazo[1,2-a]pyridin-2(3H)-one (5).
To a solution of compound 3 (258 mg, 1.0 mmol) in CH2Cl2 (5 mL) was added drop-
wise a solution of Br2 (160 mg, 1.0 mmol) in CH2Cl2 (3 mL) at 0 ◦C. The reaction mixture
was warmed to room temperature and stirred further for an additional 90 min. Then the
mixture was washed with a saturated solution of NaHCO3 and the organic layer was
evaporated under reduced pressure giving a solid crude that was recrystallized from Et2O
to give compound 5 as a pale yellow solid (231 mg; 91%). MP: 167–168 ◦C. 1H-NMR
(250 MHz, DMSO-d6) δ 12.28 (s, 1H, OH), 9.92 (d, J = 7.0 Hz, 1H, H-5), 7.79 (t, J = 8.0 Hz,
1H, H-7), 7.49–7.28 (m, 4H, H-6,8,4′,6′), 7.25–7.10 (m, 2H, H-3´,5) ppm. 13C NMR (63 MHz,
DMSO-d6) δ 175.35 (Cq, C-α), 159.10 (d, J = 246.0 Hz, Cq, C-2′), 158.92 (Cq, C-3), 137.75
(Cq, C-9), 134.11 (CH, C-7), 130.90 (d, J = 8.2 Hz, CH, C-4′), 129.70 (d, J = 4.0 Hz, CH, C-6′),
129.26 (d, J = 17.1 Hz, Cq, C-1′), 129.05 (CH, C-7), 124.01 (d, J = 3.2 Hz, CH, C-5′), 116.41
(CH, C-6), 115.33 (d, J = 21.9 Hz, CH, C-3′), 108.21 (CH, C-8), 104.73 (Cq, C-3) ppm. ESI-MS:
[M]+ 256. IR (neat, cm-1): 3015, 2969, 2841, 1699, 1686, 1610, 1569, 1438, 1307, 1257, 1212,
1139, 752. Elemental analysis calcd (%) for: C14H9FN2O2: C, 65.62; H, 3.54; N, 10.93; found:
C, 65.81; H, 3.82; N, 11.20.
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4. Conclusions

A N-2-pyridyl-β-ketoamide was shown to be a suitable precursor to the hitherto
unknown 3-arylmethyleneimidazo[1,2-a]pyridin-2(3H)-one framework via a domino pro-
cess comprising bromination, intramolecular nucleophilic substitution, and keto-enol
tautomerism stages.

Supplementary Materials: The following are available online: copies of spectra of compounds 3 and
5, including 2D-NMR correlation experiments.
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