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Abstract: In this study we report efficient method for the syntheses of mono- and diarylated
diphenyldithienylethene (DPDTE) via a palladium-catalyzed C–H arylation reaction. These new
derivatives showed amplified luminescent properties thanks to a change in polarity, particularly in
the presence of an electron-withdrawing groups (EWG). Moreover, the arylated DPDTEs showed
dual-emissive phenomena, including fluorescence in organic solvents and aggregation-induced emission.

Keywords: aggregation-induced emissions; CH functionalization; diphenyldithienylethene; palladium-
catalyzed; thiophene

1. Introduction

Tetraarylethene (TAE) has become a well-known building block for luminescent
organic material for its aggregation-induced emission (AIE) behavior [1,2]. The function-
alization of TAE changed its physical properties, leading to its extensive applications in
material science, synthetic and biological fields, supramolecular frameworks, and self-
assemblies. For example, tetrafunctionalization at the para position of the phenyl ring of
tetraphenylethene (TPE) provided interesting organic linkers for a metal–organic frame-
work (MOF) involving platinum [3], mercury [4], silver [5], and palladium [6] and a
covalent–organic framework (COF) via imine formation. TAEs showed weak emission at
the aggregation state, but their emissive intensity could be amplified via MOF and COF
formation. Diarylation of TPE can fine tune its physical properties to adapt to proposed
applications. Diarylated TPEs possess not only AIE but also other interesting physical prop-
erties. In particular, TPE-f [7], in which TPE is combined with highly luminous fluorene
groups, is an undoped organic light-emitting diode that exhibits deep-blue emissions, low
turn-on voltage (3V), and high electroluminescence efficiency. TPE-g [8–10] with a tripheny-
lamine moiety was fabricated as emissive layers in OLEDs because of its deep-blue emitter.
TPE-h [11], which bears a pyridinyl group, exhibited an enhanced hole-transporting abil-
ity, blue emission, and excellent reversible mechanochromism. TPE-i [12–14] (Scheme 1),
synthesized in high yields via the Suzuki–Miyaura reaction, showed different fluorescent
colors and reversible mechanochromic luminescence with good reproducibility in a solid
state. When R=CF3, the compound was a self-recovering mechanochromic luminogen.
When R=CHO, this group was functionalized after three steps to triethylmethylammonium
bromide, which can be used as an ultrasensitive fluorescence biosensor.
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luminogen. When R=CHO, this group was functionalized after three steps to triethylme-
thylammonium bromide, which can be used as an ultrasensitive fluorescence biosensor. 

Monoarylated TPEs have been commonly synthesized by the Suzuki–Miyaura cross-
coupling reaction. 1,8-Naphthalimide-based TPEs (TPE-a) are highly emissive lumi-
nophors having various mechanofluorochromic and aggregation-induced characteristics. 
Phenothiazine-substituted TPE (TPE-b) [15] showed strong emissions, strong AIE charac-
teristics, and mechanofluorochromism in a solid state because its conformation was 
twisted by monoarylation. TPE has also been incorporated with heptamethine cyanine IR-
780 in order to enhance its photosensitivity, photothermal response, and photostability in 
the near infrared region. TPE-c proved to be superior in rapid cell uptake and exhibited 
strong cytotoxicity to HeLa cells (IC50 = 3.3 µM). TPE-c [16] was an illustrative example of 
the relationship between an aggregation state and photophysical properties. It can be also 
applied in cell imaging and image-guided theranostics. A donor-accepter system could be 
designed by introducing an electron-withdrawing group (EWG) into TPE. For example, 
TPE-d [17] has a high polarity because its molecules consist of TPE as a donor group and 
an accepter group such as pyridyl or cyano. Their multistimulus-responsive fluorescent 
characteristics have been investigated and proven to have a relationship with AIE, mech-
anofluorescence, and acidochromism. These TPE derivatives are suitable for application 
in mechanosensors, acid or alkali fluorescence sensors, or in other opto-electronic appli-
cations. TPE-substituted benzothiadiazoles (TPE-e) [18] showed AIE and solvatochromic 
effects and have been applied to monitoring trace water fractions in organic solvents. The 
bond between TPE and the introduced aryl groups is commonly formed by the classical 
Suzuki–Miyaura cross-coupling reaction. The AIE effects of TPE, tetrathienylethene, and 
diphenyldithienylethene (DPDTE) have been thoroughly investigated. DPDTE is a good 
candidate for preparing new AIE luminogens because of the feasible arylation, via direct 
palladium-catalyzed C–H functionalization, of its thiophene moieties.  
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Scheme 1. Monoarylation and diarylation of tetraphenylethene.

Monoarylated TPEs have been commonly synthesized by the Suzuki–Miyaura cross-
coupling reaction. 1,8-Naphthalimide-based TPEs (TPE-a) are highly emissive luminophors
having various mechanofluorochromic and aggregation-induced characteristics. Phenothia-
zine-substituted TPE (TPE-b) [15] showed strong emissions, strong AIE characteristics, and
mechanofluorochromism in a solid state because its conformation was twisted by monoary-
lation. TPE has also been incorporated with heptamethine cyanine IR-780 in order to
enhance its photosensitivity, photothermal response, and photostability in the near infrared
region. TPE-c proved to be superior in rapid cell uptake and exhibited strong cytotoxicity
to HeLa cells (IC50 = 3.3 µM). TPE-c [16] was an illustrative example of the relationship
between an aggregation state and photophysical properties. It can be also applied in cell
imaging and image-guided theranostics. A donor-accepter system could be designed by
introducing an electron-withdrawing group (EWG) into TPE. For example, TPE-d [17] has
a high polarity because its molecules consist of TPE as a donor group and an accepter
group such as pyridyl or cyano. Their multistimulus-responsive fluorescent characteristics
have been investigated and proven to have a relationship with AIE, mechanofluorescence,
and acidochromism. These TPE derivatives are suitable for application in mechanosensors,
acid or alkali fluorescence sensors, or in other opto-electronic applications. TPE-substituted
benzothiadiazoles (TPE-e) [18] showed AIE and solvatochromic effects and have been
applied to monitoring trace water fractions in organic solvents. The bond between TPE and
the introduced aryl groups is commonly formed by the classical Suzuki–Miyaura cross-
coupling reaction. The AIE effects of TPE, tetrathienylethene, and diphenyldithienylethene
(DPDTE) have been thoroughly investigated. DPDTE is a good candidate for preparing
new AIE luminogens because of the feasible arylation, via direct palladium-catalyzed C–H
functionalization, of its thiophene moieties.

2. Results and Discussion
2.1. Synthesis

The starting material (DPDTE) was synthesized as described in the literature [19].
The reported procedure has been modified for gem-1,1-dibromo-2,2-dithienylethene and
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phenylboronic acid to give DPDTE with a 55% isolated yield. The palladium-catalyzed
C–H functionalization of the thiophene and thienothiophene have been optimized by
Doucet [20] and our group [21]. This ligand-free catalytic system consisted of only two
components Pd(OAc)2 and KOAc with DMAc as solvent, can be applied to various thio-
phene derivatives with good functional group tolerance. We have further optimized this
condition by changing the ratio of 1 and p-BrC6H4COOCH3 to obtain the monoarylated
DPDTE (2c) and diarylated DPDTE (3c). A short screening of the reaction conditions is
summarized in Table 1. The optimized conditions for the monoarylation of DPDTE were
established with the ratio of 1 and aryl bromide as 1:0.5. With this optimized condition
in hand, we successfully synthesized a number of monoarylated DPDTEs with moderate
isolated yields (from 41 to 50%). The synthesized monoarylated DPDTEs are listed in the
Scheme 2. The isolated yields of monoarylated DPDTEs were moderate. These conditions
are suitable for a wide range of functional groups such as nitro, nitrile, aldehyde, acetyl,
ester, and pyridine.

Table 1. Optimization of the arylation of DPDTE.
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Entry Ratio
1:ArBr

Yield (%) *
2c 3c

1 1:0.5 43 0
2 1:1 31 9
3 1:2 12 29
4 1:3 18 38
5 1:4 7 47
6 1:5 0 60

Reaction conditions: Pd(OAc)2 3 mol%, KOAc 3 eq., ratio (1:ArBr) listed in Table 1, 120 ◦C, 14 h. (ArBr =
p-BrC6H4CO2CH3), *: isolated yield.
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The diarylation could be obtained by increasing aryl bromides to 5 equivalents. Nine
prepared compounds were synthesized and are showed in Scheme 3. The isolated yields
varied from 31 to 66%, of which 3f was obtained with the highest yield, while 3i was isolated
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with the lowest yield. This result can be explained by the fact that electron-withdrawing
substituents in aryl bromides led to easier oxidative additions of the palladium catalyst
to the C–Br bond. The structures of all these compounds were confirmed by 1H-NMR,
13C-NMR and HRMS (see Supplementary Materials).
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2.2. Photophysical Properties

Finally, in order to evaluate the photophysical properties of the mono- and diarylated
DPDTEs, their UV-visible absorption and emission spectra were recorded in a chloroform
solution at room temperature (Figure 1). The characteristic values, including λabs and λem,
are listed in Table 2. The emission spectra of all these arylated DPDTE were characterized
and shown in Figure 2, in which 2f showed the highest intensive emission among all the
synthesized compounds. These results suggested that the monoarylated products (2a–f)
are more strongly emissive than the diarylated products (3a–i). This behavior could be
explained by the fact that polarity of dissymmetric monoarylated DPDTEs is higher than
that of the symmetric diarylated DPDTEs.
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Table 2. Photophysical data of the arylated DPDTE (2a–f, 3a–i).

Absorption Emission at 298 K a

λabs
a/nm (ε 103/M−1cm−1) λem

a/nm Intensity(a.u)
2a 256(73.5), 316(60.8), 363(70.4) 475 982.0
2b 334(18.1), 389(24.0) 476 1026.9
2c 277(21.4), 327(26.9) <100
2d 337(25.0), 413(33.3) <100
2e 253(25.0), 332(19.4), 385(24.4) 467 2536.7
2f 261(23.3), 323(16.2), 376(19.9) 446 5733.3

3a 263(21.8), 370(40.0) 495 284.8
3b 260(59.2), 344(72.5) <100
3c 263(44.2), 362(62.9) <100
3d 264(29.3), 357(31.9) <100
3e 268(32.3), 384(52.7) <100
3f 269(34.0), 306(36.6), 409(49.2) <100
3g 263(29.0), 355(33.0) 452 621.7
3h 336(48.5) <100
3i 253(36.2), 344(54.6), 385(36.5) <100

a Measured in CHCl3 solution at 298 K (C = 10−5 M), with 360 nm excitation.

The aggregation-induced emissions of 2b and 2e are shown in Figures 3 and 4, re-
spectively. A common feature of the electronic absorption spectra of the monoarylated
DPDTEs is a set of three absorption bands characteristic of aromatic rings with intense
and well-resolved absorption bands in the UV region (250–450 nm). However, spectrum 2c
has only two absorption bands in the spectrum cut-off. The ester is the weakest electron-
withdrawing-group of the considered substituents, and 2c’s three absorption bands do not
shift to the longer wavelength as much as some other monoarylated DPDTEs do. Therefore,
the band with the shortest wavelength falls outside the range of the screenshot diagram.
Diarylated DPDTEs showed only two bands from 250 to 450 nm. This difference is due to
the more symmetric structure of the diarylated derivatives in comparison to the monoary-
lated ones. Among those monoarylated DPDTEs, those with strong EWGs, such as 2b, 2d,
2e, and 2f showed increase in absorption intensity as well as in absorption wavelength due
to the reduced-energy band gap between HOMO and LUMO of the molecules. Compound
2e showed amazing fluorescence with increasing emission intensity: about 16-fold, from
zero to about 17,500 a.u., while the percentage of water reached 90%. The emission color of
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2e changed from blue to yellow and could be easily observed under UV light. In addition,
its wavelength shifted from 450 to 545 nm, while for compound 2b, when the H2O ratio
was increased, there was a gradual shift in emission wavelength. Interestingly, the color
intensity increased from 2000 to 9000 a.u and was then reduced to 8200 a.u due to the
quenching (ACQ) effect of aggregation. This aggregation may have been assisted by the
hydrogen bonding of the gem-diol, which resulted from adding a water molecule to the
aldehyde functional group.
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Therefore, the band with the shortest wavelength falls outside the range of the screenshot 
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monoarylated ones. Among those monoarylated DPDTEs, those with strong EWGs, such 
as 2b, 2d, 2e, and 2f showed increase in absorption intensity as well as in absorption wave-
length due to the reduced-energy band gap between HOMO and LUMO of the molecules. 
Compound 2e showed amazing fluorescence with increasing emission intensity: about 16-
fold, from zero to about 17,500 a.u., while the percentage of water reached 90%. The emis-
sion color of 2e changed from blue to yellow and could be easily observed under UV light. 
In addition, its wavelength shifted from 450 to 545 nm, while for compound 2b, when the 
H2O ratio was increased, there was a gradual shift in emission wavelength. Interestingly, 
the color intensity increased from 2000 to 9000 a.u and was then reduced to 8200 a.u due 
to the quenching (ACQ) effect of aggregation. This aggregation may have been assisted 
by the hydrogen bonding of the gem-diol, which resulted from adding a water molecule 
to the aldehyde functional group. 
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3. Materials and Methods
3.1. Materials

Reagents and solvents were obtained from commercial suppliers and used without
further purification. Column chromatography was carried out using Merck Kieselgel 60
silica gel (particle size: 32–63 Å). Analytical TLC was performed using Merck precoated
silica gel 60 F-254 sheets. All the C–H activation reactions were carried out under a nitrogen
atmosphere. NMR spectroscopic data were acquired on Bruker Avance III spectrometer at
500 MHz for 1H–NMR and 125 MHz for 13C–NMR. HR–MS spectra were recorded on a
6500 series Q-TOF (Agilent) spectrometer. UV-Vis absorption spectra was measured on the
UV-Vis Cary 60-Agilent spectrometer. Fluorescence spectra were recorded on Perkin Elmer
FL 8500 spectrometer.

3.2. General Procedure for the CH Arylated Reaction

A suspension of DPDTE (69 mg, 0.2 mmol, 1.0 eq), Pd(OAc)2 (1.0 mg, 0.006 mmol,
0.03 eq), KOAc (58 mg, 0.6 mmol, 3.0 eq), and 4-arylbromide (0.5 eq for monoarylation
and 5.0 eq for diarylation) in degassed DMAc (5.0 mL) was stirred at 120 ◦C for 14 h
under a nitrogen atmosphere. The insoluble impurities were filtered, and the combined
filtrates were washed with water (3 × 30 mL) and dried over anhydrous Na2SO4. The
solvent was evaporated in vacuo to give a crude residue which was purified by column
chromatography on silica gel (n-hexane) to give pure monoarylated (2a–f) and diarylated
products (3a–i).

1-(2-(pyridine-4-yl)thien-5-yl)-1-thien-5-yl-2,2-diphenylethene 2a: 40 mg (48%), yellow solid.
1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 8.50 (2H, d, J = 6.5 Hz), δ 7.38 (2H, d, J = 6.0 Hz),
δ 7.25–7.18 (10H, m), δ 7.15–7.13 (2H, m), δ 6.84–6.82 (2H, m), δ 6.76 (1H, d, J = 4.0 Hz);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 148.7, 144.8, 143.9, 143.3, 142.8, 142.7, 142.6, 140.4,
131.2, 131.1, 130.5, 129.9, 128.3, 128.0, 127.5, 127.3, 126.9, 126.7, 126.3, 125.9, 125.5, 119.7.
HR-MS calcd for C27H20NS2 ([M+H]+): 422.1037, found: 422.1039.

1-(2-(4-formylphenyl)thien-5-yl)-1-thien-5-yl-2,2-diphenylethene 2b: 44 mg (49%), yellow solid.
1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 9.96 (1H, s), δ 7.81 (2H, d, J = 8.5 Hz), δ 7.60
(2H, d, J = 8.0 Hz), δ 7.26–7.14 (12H, m), δ 6.84 (2H, d, J = 3.0 Hz), δ 6.74 (1H, d, J = 3.5 Hz);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 191.4, 147.7, 145.0, 143.3, 143.0, 142.9, 142.8, 140.0,
134.9, 131.2, 130.6, 130.4, 129.9, 128.3, 128.0, 127.4, 127.2, 126.6, 126.3, 126.2, 125.7, 124.4.
HR-MS calcd for C29H21OS2 ([M+H]+): 449.1034, found: 449.1064.
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1-(2-(methyl 4-benzoate)thien-5-yl)-1-thien-5-yl-2,2-diphenylethene 2c: 42 mg (44%), yellow
solid. 1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 7.96 (2H, d, J = 8.5 Hz), δ 7.52 (2H, d,
J = 8.5 Hz), δ 7.21–7.12 (12H, m), δ 6.83 (2H, d, J = 3.5 Hz), δ 6.72 (1H, d, J = 4.0 Hz), δ 3.91
(3H, s); 13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 166.8, 147.0, 145.1, 143.2, 143.0, 131.0,
130.7, 130.6, 130.2, 129.9, 128.6, 128.2, 128.0, 127.3, 127.1, 126.6, 126.3, 125.1, 123.8, 52.1.
HR-MS calcd for C30H23O2S2 ([M+H]+): 479.1139, found: 479.1136.

1-(2-(4-nitrophenyl)thien-5-yl)-1-thien-5-yl-2,2-diphenylethene 2d: 44 mg (47%), orange solid.
1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 8.16 (2H, d, J = 9.0 Hz), δ 7.57 (2H, d, J = 9.0 Hz),
δ 7.22–7.17 (10H, m), δ 7.14 (2H, m), δ 6.85–6.84 (2H, m), δ 6.75 (1H, d, J = 3.5 Hz); 13C-NMR
δC (125 MHz, CDCl3, δ ppm): δ 148.6, 146.4, 144.9, 143.7, 142.9, 142.8, 141.6, 140.5, 139.6,
131.3, 130.6, 129.9, 128.3, 128.0, 127.5, 127.3, 126.7, 126.3, 126.0, 125.6, 125.0, 124.3. HR-MS
calcd for C28H19NO2S2 ([M]+): 465.0857, found: 465.0822.

1-(2-(4-acetylphenyl)thien-5-yl)-1-thien-5-yl-2,2-diphenylethene 2e: 38 mg (41%), yellow solid.
1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 7.89 (2H, d, J = 8.5 Hz), δ 7.54 (2H, d, J = 8.5 Hz),
δ 7.22–7.13 (12H, m), δ 6.84–6.83 (2H, m), δ 6.73 (2H, d, J = 4.0 Hz), δ 2.58 (3H, s, -CH3);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 197.3, 147.2, 145.1, 143.1, 143.0, 142.9, 138.7, 135.6,
131.1, 130.6, 129.9, 129.0, 128.2, 127.9, 127.8, 127.3, 127.1, 126.6, 126.3, 125.2, 123.9, 26.5.
HR-MS calcd for C30H23OS2 ([M+H]+): 463.1190, found: 463.1165.

1-(2-(4-nitrilphenyl)thien-5-yl)-1-thien-5-yl-2,2-diphenylethene 2f: 45 mg (50%), orange solid.
1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 7.57 (2H, d, J = 8.5 Hz), δ 7.53 (2H, d, J = 8.5 Hz),
δ 7.22–7.12 (12H, m), δ 6.85–6.83 (2H, m), δ 6.74 (1H, d, J = 4.0 Hz); 13C-NMR δC (125 MHz,
CDCl3, δ ppm): δ 147.9, 144.9, 143.4, 142.9, 142.8, 142.1, 138.5, 132.6, 131.1, 130.8, 130.6,
129.9, 129.8, 128.3, 128.0, 127.4, 127.2, 126.7, 126.3, 126.0, 125.6, 124.4, 118.9, 110.3. HR-MS
calcd for C29H20NS2 ([M+H]+): 446.1037, found: 446.1021.

1,1-Di(2-(pyridine-4-yl)thien-5-yl)-2,2-diphenylethene 3a: 49 mg (49%), yellow solid. 1H-NMR
δH (500 MHz, CDCl3, δ ppm): δ 8.53 (4H, brs), δ 7.39 (4H, d, J = 4.5 Hz), δ 7.28 (2H, d,
J = 4.0 Hz), δ 7.23–7.19 (10H, m), δ 6.83 (2H, d, J = 4.0 Hz); 13C-NMR δC (125 MHz, CDCl3,
δ ppm): δ 149.0, 148.0, 145.3, 142.4, 141.0, 131.5, 130.5, 128.3, 128.2, 127.8, 125.5, 125.3, 119.7.
HR-MS calcd for C32H23N2S2 ([M+H]+): 499.1303, found: 499.1291.

1,1-Di(2-(4-formylphenyl)thien-5-yl)-2,2-diphenylethene 3b: 72 mg (65%), yellow solid. 1H-
NMR δH (500 MHz, CDCl3, δ ppm): δ 9.96 (2H, s), δ 7.82 (4H, d, J = 8.5 Hz), δ 7.62 (4H, d,
J = 8.0 Hz), δ 7.22–7.21 (12H, m), δ 6.82 (2H, d, J = 4.0 Hz); 13C-NMR δC (125 MHz, CDCl3,
δ ppm): δ 191.4, 147.0, 144.2, 143.2, 142.7, 139.9, 135.1, 131.4, 130.6, 130.4, 128.3, 128.1, 127.6,
125.7, 124.5. HR-MS calcd for C36H25O2S2 ([M+H]+): 553.1296, found: 553.1309.

1,1-Di(2-(methyl 4-benzoate)thien-5-yl)-2,2-diphenylethene 3c: 74 mg (61%), yellow solid. 1H-
NMR δH (500 MHz, CDCl3, δ ppm): δ 7.97 (4H, d, J = 9.0 Hz), δ 7.53 (4H, d, J = 9.0 Hz),
δ 7.21–7.19 (10H, m), δ 7.15 (2H, d, J = 4.0 Hz), δ 6.79 (2H, d, J = 4.0 Hz), δ 3.91 (6H, s);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 166.7, 146.4, 143.6, 143.5, 142.9, 138.5, 131.3, 130.6,
130.2, 128.7, 128.2, 127.4, 126.6, 125.1, 123.9, 52.1. HR-MS calcd for C38H28O4S2 ([M]+):
612.1429, found: 612.1421.

1,1-Di(2-(4-nitrophenyl)thien-5-yl)-2,2-diphenylethene 3d: 73 mg (62%), orange solid. 1H-NMR
δH (500 MHz, CDCl3, δ ppm): δ 8.18 (4H, d, J = 9.0 Hz), δ 7.59 (4H, d, J = 8.0 Hz), δ 7.24–7.19
(12H, m), δ 6.83 (2H, d, J = 3.5 Hz); 13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 147.7, 147.6,
146.6, 144.9, 142.5, 142.1, 140.3, 131.5, 130.5, 128.3, 127.8, 125.7, 125.6, 125.1, 124.4. HR-MS
calcd for C34H23N2O4S2 ([M+H]+): 587.1099, found: 587.1078.

1,1-Di(2-(4-acetylphenyl)thien-5-yl)-2,2-diphenylethene 3e: 68 mg (59%), yellow solid. 1H-
NMR δH (500 MHz, CDCl3, δ ppm): δ 7.91 (4H, d, J = 8.5 Hz), δ 7.56 (4H, d, J = 8.5 Hz),
δ 7.17 (2H, d, J = 4.0 Hz), δ 7.23–7.19 (10H, m), δ 6.80 (2H, d, J = 4.0 Hz), δ 2.58 (6H, s);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 197.2, 146.6, 143.8, 143.4, 142.8, 138.6, 135.7, 131.3,
130.6, 129.0, 128.2, 127.5, 125.3, 124.0, 26.5. HR-MS calcd for C38H28O2S2 ([M]+): 580.1531,
found: 580.1506.
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1,1-Di(2-(4-cyanophenyl)thien-5-yl)-2,2-diphenylethene 3f: 72 mg (66%), yellow solid. 1H-NMR
δH (500 MHz, CDCl3, δ ppm): δ 7.59 (4H, d, J = 8.5 Hz), δ 7.54 (4H, d, J = 8.5 Hz), δ 7.23–7.19
(10H, m), δ 7.16 (2H, d, J = 4.0 Hz), δ 6.80 (2H, d, J = 4.0 Hz); 13C-NMR δC (125 MHz, CDCl3,
δ ppm): δ 147.1, 144.4, 142.6, 142.5, 138.4, 132.6, 131.4, 130.5, 128.3, 127.7, 125.7, 125.5, 124.5,
118.8, 110.5. HR-MS calcd for C36H22N2S2 ([M]+): 546.1224, found: 546.1218.

1,1-Di(2-(4-trifluoromethylphenyl)thien-5-yl)-2,2-diphenyl ethene 3g: 70 mg (55%), yellow solid.
1H-NMR δH (500 MHz, CDCl3, δ ppm): δ 7.56 (8H, s), δ 7.22–7.19 (10H, m), δ 7.13 (2H, d,
J = 4.0 Hz), 6.80 (2H, d, J = 4.0 Hz); 13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 146.3, 143.7,
143.0, 142.8, 137.6, 131.2, 130.6, 129.3, 129.2, 129.0, 128.2, 127.5, 125.9, 125.8, 125.5, 123.8,
29.3. HR-MS calcd for C36H22F6S2 ([M]+): 632.1067, found: 632.1065.

1,1-Di(2-(3-formylphenyl)thien-5-yl)-2,2-diphenyl ethene 3h: 67 mg, 61%), yellow solid. 1H-
NMR δH (500 MHz, CDCl3, δ ppm): δ 10.01 (2H, s), δ 7.98 (2H, t), δ 7.74–7.72 (4H, m), δ 7.49
(2H, t, J = 7.5 Hz), δ 7.22–7.20 (10H, m), δ 7.14 (2H, d, J = 4.0 Hz), δ 6.80 (2H, d, J = 4.0 Hz);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 192.0, 146.0, 143.5, 143.1, 142.9, 136.9, 135.3, 131.2,
131.1, 130.6, 129.5, 128.5, 128.2, 127.4, 126.4, 125.9, 123.4. HR-MS calcd for C36H24O2S2
([M]+): 552.1218, found: 552.1181.

1,1-Di(2-(4-methoxyphenyl)thien-5-yl)-2,2-diphenyl ethene 3i: 34 mg, 31%), yellow solid. 1H-
NMR δH (500 MHz, CDCl3, δ ppm): δ 7.41 (4H, d, J = 9.0 Hz), δ 6.85 (4H, d, J = 8.5 Hz),
δ 6.92 (2H, d, J = 4.0 Hz), δ 7.23–7.16 (10H, m), δ 6.73 (2H, d, J = 3.5 Hz), δ 3.81 (6H, s);
13C-NMR δC (125 MHz, CDCl3, δ ppm): δ 159.2, 144.8, 144.0, 143.4, 131.0, 130.7, 128.2, 128.1,
127.5, 127.3, 127.0, 126.8, 125.8, 121.3, 114.2, 55.4. HR-MS calcd for C36H28O2S2 ([M]+):
556.1531, found: 556.1507.

4. Conclusions

In conclusion, we developed an efficient palladium-catalyzed direct arylation of
DPDTE with various aryl bromides. This efficient ligand-free reaction conditions can
tolerate various functional groups. Therefore, our methodology is a useful tool for adjusting
the polarity of DPDTE and to improve its fluorescent intensity. The photophysical property
of the two monoarylated DPDTEs 2b and 2e were also characterized. In addition, the two
diarylated DPDTEs 3a and 3f are undergoing further self-assembly study with metal ions
that enhance their fluorescence since these DPDTEs contain potential coordination sites.

Supplementary Materials: The following is available online: supporting information with NMR
spectra of compounds 2a–f, 3a–i.
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