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Abstract: The X-ray structure of the title compound has been determined for the first time. Data on
its 1H–13C-NMR coupling constants and 15N-NMR spectrum are also given.
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1. Introduction

The fundamental heterocyclic compound hexahydro-1,4-diazepine or “homopiper-
azine” 1 was first reported in 1899 [1,2] and a convenient industrial preparation was
described in 1961 [3]. At present, it is commercially available from several major suppliers
and it has recently found various applications, including as a component of liquids for CO2
capture [4] and as a component of various organic and organic/inorganic supramolecular
ionic salts and transition metal complexes. In these latter applications, the materials are
often characterised by X-ray diffraction and so there are a large number of X-ray struc-
tures involving a homopiperazinium dication in salts or mixed salts with, for example,
carboxylic acids [5–7], potassium perchlorate [8], ammonium perchlorate [9], manganese
sulfate oxalate [10], cobalt sulfate [11], zinc phosphate [12], arsenic oxide [13], tellurium
phosphate [14], cadmium phosphate [15], cadmium chlorides [16,17], lead bromide [18],
bismuth iodide [19], uranium fluoride [20] and uranium sulfate [21]. There are also a
significant number of structures in which homopiperazine acts as a bidentate ligand on
nickel [22,23], copper [24] and platinum [25–28]. However, in all of these, the structure is
significantly distorted either by protonation or metal complexation, and it appears that
the X-ray structure of homopiperazine on its own has not so far been determined, quite
possibly because its low melting point of 42 ◦C [2] makes it difficult to obtain suitable
crystals. We have now determined its structure and present here the result as well as
several key NMR parameters.

2. Results

Crystals suitable for diffraction were obtained from the inner surface of a commercial
bottle (Sigma Aldrich) which had been stored for >5 years, allowing slow sublimation. The
resulting structure (Figure 1) shows how three adjacent molecules are aligned with the NH
atoms of the central ring, viewed from above, hydrogen-bonding to the nitrogen lone pairs
of the molecules on either side, which are viewed side-on. The bond lengths and angles in
the symmetrical molecule are unremarkable, with the exception of the carbon–carbon bond
of the N–CH2–CH2–N moiety, which is rather long at 1.603(10) Å. This may be compared
with a mean value of 1.524 Å for sp3 CH2–CH2 in general [29] and is in stark contrast to
the values of 1.5204(15) and 1.5190(15) Å observed in piperazine hydrate [30], the value
of 1.513(2) Å in the monoprotonated homopiperazinium perchlorate [31] and 1.521(4) Å
in an N,N’-dibenzylatedhomopiperazine [32]. The reason for the long bond in this case is
unclear, although other examples of such long NCH2–CH2N bonds have been located [33].
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Figure 1. Molecular structure of 1 with anisotropic displacement ellipsoids drawn at 50% probability
level and showing numbering system used. Bond lengths and angles: N(1)–C(2) 1.455(5), C(2)–C(3)
1.481(5), N(1)–C(4) 1.470(5), C(4)–C(4A) 1.603(10), N(1)–H(1) 0.977(7) Å; C(2)–N(1)–C(4) 112.0(3),
N(1)–C(4)–C(4A) 111.0(3), N(1)–C(2)–C(3) 114.9(4), C(2)–C(3)–C(2A) 114.8(6)◦. Symmetry operator to
generate the whole molecule is −X + 1, −Y, Z.

The conformation of 1 is shown in Figure 2 and the N–C–C–N torsion angle of 58.2(4)◦

confirms that the left-hand end of the molecule has an almost ideal chair-type conformation,
which is only slightly distorted by the insertion of the extra atom at the right-hand end. The
two nitrogen lone pairs are aligned in opposite directions, which facilitates the formation
of a hydrogen-bonded network due to interaction with the NH of adjacent molecules, as
shown in Figure 1. The hydrogen-bonding parameters (Table 1) are well within the normal
ranges. It should be noted that the present structure is quite different from previously
reported structures of both metal complexes and protonated salts of 1 since, in the former
case, coordination of the nitrogen lone pairs to the metal dominates, whereas, in the latter,
protonation removes any opportunity for hydrogen bonding.
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Figure 2. Structures of 1 showing IUPAC numbering and observed conformation.

Table 1. Hydrogen bonding parameters for 1 (Å, ◦).

D—H . . . A D—H H . . . A D . . . A D—H . . . A

N(1)–H(1) . . .
N(1B) 0.977(7) 2.21(3) 3.189(4) 175(4)

The symmetry operator to generate N(1B) is Y + 1, −X + 1, −Z + 1.

The 1H and 13C NMR spectra for 1 are documented in D2O in a recent publication [4]
along with HSQC and HMBC spectra, allowing complete and unambiguous assignment.



Molbank 2021, 2021, M1200 3 of 5

Our data in CDCl3 were in good agreement with these values but, by recording the non-1H-
decoupled 13C spectrum, all three values of 1JC–H were readily determined as 1J C(2)–H(2)
132.6 Hz, 1J C(5)–H(5) 132.7 Hz, 1J C(6)–H(6) 124.3 Hz, and, in addition, 2J C(6)–H(5/7)
could be measured as 2.6 Hz. The remaining 2JC–H values as well as longer-range couplings
were not readily determined due to the complexity of the signals. The larger values of
1JC–H for CH2N are in agreement with literature reports with values of 136.1 Hz for C-3 of
a tetrahydroisoquinoline [34] and 132.0–139.0 Hz for C-4/5 of imidazolidines [35], while
the value for C(6)–H(6) is in good agreement with 124.6 Hz for cyclohexane [36].

Finally, the 15N NMR signal observed at −344.6 ppm with respect to MeNO2 is in
good agreement with those for similar cyclic secondary amines such as piperidine (−342.3)
and pyrrolidine (−342.6) [37].

In summary, we obtained the X-ray crystal structure of homopiperazine for the first
time and found the molecule to exist in a pseudo-chair conformation, with each NH acting
both as a hydrogen-bonding donor and acceptor, leading to a complex network structure
overall. The values of the three one-bond CH coupling constants and the 15N chemical
shift have been determined from its NMR spectra.

3. Experimental

The structure was determined on a Rigaku XtalLAB P200 diffractometer using graphite
monochromated Mo Kα radiation λ = 0.71075 Å.

Crystal data for C5H12N2, M = 100.16 g mol−1, colourless prism, crystal dimen-
sions 0.10 × 0.10 × 0.10 mm3, tetragonal, space group I–42d (No. 122), a = b = 7.208(2),
c = 23.094(7) Å, α = β = γ = 90.00◦, V = 1199.9(6) Å3, Z = 8, Dcalc = 1.109 g cm−3, T = 93 K,
R1 = 0.0637, Rw2 = 0.1633 for 536 reflections with I > 2σ(I), and 37 variables, Rint 0.0374,
goodness of fit on F2 1.137. Data have been deposited at the Cambridge Crystallographic
Data Centre as CCDC 2049324. The data can be obtained free of charge from the Cambridge
Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures (accessed on
30 March 2021). The structure was solved by direct methods and refined by full-matrix
least-squares against F2 (SHELXL Version 2018/3 [38]).

NMR spectra were recorded using a Bruker (Bruker, Billerica, MA, USA) AV instru-
ment at 75.458 MHz (13C) and a Bruker AVIII-HD instrument at 50.69 MHz (15N) in CDCl3
with chemical shifts given with respect to Me4Si (13C) and MeNO2 (15N) and coupling
constants in Hz.

δC (non-decoupled) 33.3 (t of quintets, 1J 124.3, 2J 2.6, C-6), 47.8 (t of m, 1J 132.7, C-5,7),
51.5 (t of m, 1J 132.6, C-2,3); δN –344.6.

Supplementary Materials: The following are available online, Figure S1: Undecoupled 13C-NMR
spectrum of 1; Figure S2: Undecoupled 13C-NMR spectrum of 1—expansion of C-6 signal; Figure S3:
15N-NMR spectrum of 1.
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