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Abstract: Using environmentally friendly conditions, the nucleophilic ring-opening reaction of 6-
azabicyclo[3.1.0]hex-3-en-2-ol with 1-methyl-1H-tetrazole-5-thiol provided a novel thiol-incorporated
aminocyclopentitol, (1R,4S,5S)-5-((3-hydroxypropyl)amino)-4-((1-methyl-1H-tetrazol-5-yl)thio)
cyclopent-2-en-1-ol, in excellent yield (95%). The newly synthesized compound was analyzed and
characterized via 1H, 13C-NMR, HSQC, and mass spectral data.
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1. Introduction

Aziridines are recurrent motifs in anticancer compounds (Figure 1A) and are useful
building blocks in organic synthesis, largely due to their ring strain [1].

 
 

 

 
Molbank 2021, 2021, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/molbank 

Short Note 

(1R,4S,5S)-5-((3-Hydroxypropyl)amino)-4-((1-Methyl-1H-  
Tetrazol-5-yl)thio)Cyclopent-2-en-1-ol 
Milene A. G. Fortunato, Filipa Siopa * and Carlos A. M. Afonso * 

Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. 
Gama Pinto, 1649-003 Lisboa, Portugal; milene.fortunato@campus.ul.pt 
* Correspondence: filipasiopa@ff.ulisboa.pt (F.S.); carlosafonso@ff.ulisboa.pt (C.A.M.A.);  

Tel: +351-21-7946400 (ext. 321) (F.S. & C.A.M.A.) 

Abstract: Using environmentally friendly conditions, the nucleophilic ring-opening reaction of 6-
azabicyclo[3.1.0]hex-3-en-2-ol with 1-methyl-1H-tetrazole-5-thiol provided a novel thiol-incorpo-
rated aminocyclopentitol, (1R,4S,5S)-5-((3-hydroxypropyl)amino)-4-((1-methyl-1H-tetrazol-5-
yl)thio)cyclopent-2-en-1-ol, in excellent yield (95%). The newly synthesized compound was ana-
lyzed and characterized via 1H, 13C-NMR, HSQC, and mass spectral data. 

Keywords: aminocyclopentitol; bicyclic aziridine; water chemistry; nucleophilic substitution 
 

1. Introduction 
Aziridines are recurrent motifs in anticancer compounds (Figure 1A) and are useful 
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Figure 1. Examples of chemical structures of bioactive compounds containing aziridines (A) and 
important biological compounds containing the aminocyclopentitol scaffold (B) [2–4]. 

In 1972, Kaplan and co-workers implemented an innovative methodology to prepare 
6-azabicyclo[3.1.0]hex-3-en-2-ol (bicyclic vinyl aziridines) via the photochemical conver-
sion of pyridinium salts (Scheme 1) [5]. Bicyclic vinyl aziridines are useful intermediates 
to access aminocyclopentitols, a family of natural compounds known for being glyco-
sidase inhibitors (Figure 1B) [6,7]. The synthetic methodology to prepare aminocyclopen-
titols involves the synthesis of bicyclic vinyl aziridines, followed by a ring-opening reac-
tion to originate an aminocyclopentene, which after further functionalization originate the 
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Figure 1. Examples of chemical structures of bioactive compounds containing aziridines (A) and
important biological compounds containing the aminocyclopentitol scaffold (B) [2–4].

In 1972, Kaplan and co-workers implemented an innovative methodology to prepare
6-azabicyclo[3.1.0]hex-3-en-2-ol (bicyclic vinyl aziridines) via the photochemical conversion
of pyridinium salts (Scheme 1) [5]. Bicyclic vinyl aziridines are useful intermediates to
access aminocyclopentitols, a family of natural compounds known for being glycosidase
inhibitors (Figure 1B) [6,7]. The synthetic methodology to prepare aminocyclopentitols
involves the synthesis of bicyclic vinyl aziridines, followed by a ring-opening reaction
to originate an aminocyclopentene, which after further functionalization originate the
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desired aminocyclopentitol. This methodology was developed by Mariano [8] and ap-
plied to the synthesis of several aminocyclopentitols, such as (+)-mannostatin A [9], (+)-
castanospermine [10], and (-)-swainsonine [11] (Scheme 1).
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Scheme 2. (A) Flow photocyclization of pyridinium salts [14,15], improvements over batch meth-
odology [16,17]; previous work on (B) palladium-catalyzed allylic substitutions on bicyclic vinyl 
aziridines using carbon-based nucleophiles [18] and (C) nucleophilic ring-opening reactions of 
bicyclic vinyl aziridines with thiol and nitrogen nucleophiles [17]; (D) this work: nucleophilic ring-
opening reaction of bicyclic vinyl aziridine ring (2c) by 1-methyl-1H-tetrazole-5-thiol to produce 
3c. 

Scheme 1. Synthetic methodology to prepare aminocyclopentitols by taking advantage of bicyclic vinyl aziridines prepared
via photoreactions of pyridinium salts [9–11].

Mannostatin A is a natural product, first isolated from a soil microorganism Streptover-
ticillus, and is among the most potent inhibitors of class II α-mannosidase. The chemical
structure of Mannostatin A contains a thiol functionality, responsible for the high affinity
to the enzyme’s binding site [12]. Inhibitors of glycosidases are leading the drug discovery
across cancer, and viral and bacterial infections. Mannostatin A and its analogs [13] have
been used to study the inhibition of glycosidases to orientate the development of drug
candidates [6,7].

Our group studied the photochemical reactions of pyridinium salts to bicyclic vinyl
aziridines under continuous-flow [14,15]. The implementation of flow enabled the synthesis
of bicyclic vinyl aziridines with larger productivity when compared to reported batch
methods [16] and also the achievement of a gram scale production [15] (Scheme 2A).
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work on (B) palladium-catalyzed allylic substitutions on bicyclic vinyl aziridines using carbon-based nucleophiles [18] and
(C) nucleophilic ring-opening reactions of bicyclic vinyl aziridines with thiol and nitrogen nucleophiles [17]; (D) this work:
nucleophilic ring-opening reaction of bicyclic vinyl aziridine ring (2c) by 1-methyl-1H-tetrazole-5-thiol to produce 3c.
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We also studied several bicyclic vinyl aziridines transformations. In collaboration with
G. Poli, we reported a palladium-catalyzed allylic substitutions using C-nucleophiles [18]
(Scheme 2B). Additionally, we accomplished several ring-opening reactions using sulfur
and nitrogen-based nucleophiles in an aqueous medium, including a bioconjugation with
the peptide hormone salmon calcitonin (sCT) [17] (Scheme 2C). Within the reactions
performed, the best yields were achieved for thiol-nucleophiles. In line with this work, we
herein present the ring-opening reaction of 6-(3-hydroxypropyl)-6-azabicyclo[3.1.0]hex-3-
en-2-ol by a thiol-based nucleophile, 1-methyl-1H-tetrazole-5-thiol (Scheme 2D).

2. Results and Discussion

The starting material, 1-(3-hydroxypropyl)pyridin-1-ium chloride (1c), was prepared
from pyridine and 3-chloropronanol following our reported method. 6-(3-hydroxypropyl)-
6-azabicyclo[3.1.0]hex-3-en-2-ol (2c) was obtained by photohydration of the pyridinium salt
1c (Scheme 3), also taking advantage of our previous reported synthetic methodology [18].
In this work, the bicyclic vinyl aziridine 2c was subjected to thiol-nucleophilic attack by
1-methyl-1H-tetrazole-5-thiol, applying our reported optimized conditions [17]. An excess
of the nucleophile (3 equivalents) was used under mild reaction conditions (37 ◦C, in water),
and we obtained the product 3c as a brown oil, in excellent yield (95%) after purification
by silica gel chromatography (Scheme 3). The ring-opening reaction occurs via the SN2
pathway in a regio- and stereospecific manner, and the nucleophile attacks in the less
sterically hindered carbon of the aziridine moiety, as previously reported by Mariano [19]
and Burger [20], and more recently also by us [17].
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Scheme 3. Synthetic pathway from photocyclization of 1-(3-hydroxypropyl)pyridin-1-ium chloride (1c) [18], followed by a
nucleophilic attack to the bicyclic vinyl aziridine ring (2c) by 1-methyl-1H-tetrazole-5-thiol to produce 3c.

The product 3c was characterized by 1H-NMR, 13C-NMR, HSQC, and HRMS. By
analyzing the 1H-NMR spectrum (Figure S1), we can observe characteristic peaks from
product 3c: a singlet at 3.96 ppm, corresponding to the methyl group linked to the tetrazole
ring (H-18), and multiplets corresponding to the geminal protons of the thioether at 4.30–
4.29 ppm (H-4), the alcohol at 4.59–4.58 ppm (H-1), and the amine at 3.29–3.26 ppm (H-5).
The signals for the hydroxypropyl chain can be observed as a quartet (J = 6.9 Hz, 2.77 ppm),
a multiplet (1.76–1.67 ppm), and a triplet (J = 6.4 Hz, 3.60 ppm), corresponding to the
protons vicinal to the amine (H-7), to the middle-chain methylene (H-8), and to the protons
geminal to the hydroxyl group (H-9), respectively. Additionally, the 13C-NMR (Figure S2)
shows the characteristic peaks from the tetrazole ring: a quaternary carbon at 153.32 ppm
(C-13), which does not correlate with a proton signal in the HSQC (Figure S3), and the
carbon from the methyl group at 33.87 ppm (C-18).

The product 3c can be further functionalized, since it has a primary and a secondary
hydroxyl group. Moreover, 3c has a tetrazole ring which could lead to potential biological
activity, since the tetrazole moiety can be found in different approved [21] and candidate
drugs [22,23]. Accomplishing the synthesis of 3c contributed to expanding our previous
aminocyclopentitols library [17].



Molbank 2021, 2021, M1199 4 of 5

3. Materials and Methods

All chemicals, reagents, and solvents were of analytical grade, purchased from com-
mercial sources, namely, Merck (Algés, Portugal) and Alfa Aesar (Kandel, Germany) and
were used without further purification. NMR spectra were obtained on a Bruker Fourier
300 spectrometer (Bruker BioSpin AG, Fallanden, Switzerland) using TopSpin(®) software
(Bruker BioSpin GmbH, Rheinstetten, Germany). NMR experiments were performed in
D2O at room temperature. Chemical shifts are given in parts per million (ppm); the terms
m, s, d, t, and q represent multiplet, singlet, doublet, triplet, and quartet, respectively; and
the coupling constants (J) are given in Hertz (Hz). High-resolution mass spectroscopy
(HRMS) was performed in a LTQ Orbitrap XL mass spectrometer, Thermo Fischer Scientific,
Bremen, Germany.

1-(3-hydroxypropyl)pyridin-1-ium chloride (1c) and (1R,2R,5R)-6-(3-hydroxypropyl)-
6-azabicyclo[3.1.0]hex-3-en-2-ol (2c) were prepared as previously described by us [18].

(1R,4S,5S)-5-((3-hydroxypropyl)amino)-4-((1-methyl-1H-tetrazol-5-yl)thio)cyclopent-2-en-
1-ol 3c: To a solution of (1R,2R,5R)-6-(3-hydroxypropyl)-6-azabicyclo[3.1.0]hex-3-en-2-ol
2c (29.6 mg; 0.19 mmol) in distilled water (1 mL), 1-methyl-1H-tetrazole-5-thiol (60.1 mg;
0.57 mmol, 3 equiv.) was added. The reaction mixture was stirred at 37 °C and followed
by TLC (eluent: dichloromethane/methanol, 9:1) until the complete disappearance of
the starting material, observed after 7 days. The crude reaction was concentrated under
reduced pressure and purified by silica gel chromatography eluting with dichloromethane,
methanol, and triethylamine (9:1:0.1) to afford the ring-opening product 3c as a brown oil
in 95% yield (49.23 mg).

1H-NMR (300 MHz, D2O) δ 5.95–5.90 (m, 2H, H-2 and H-3), 4.59–4.58 (m, 1H, H-1),
4.30–4.29 (m, 1H, H-4), 3.96 (s, 3H, H-18), 3.60 (t, J = 6.4 Hz, 2H, H-9), 3.29–3.26 (m, 1H,
H-5), 2.77 (q, J = 6.9 Hz, 2H, H-7), 1.76-1.67 (m, 2H, H-8).

13C-NMR (100 MHz, D2O) δ 153.32 (C-13), 135.02 (C-3), 131.91 (C-2), 80.01 (C-1), 72.44
(C-5), 59.60 (C-9), 55.55 (C-4), 44.05 (C-7), 33.87 (C-18), 30.67 (C-8).

HRMS m/z calc. for C10H17N5O2S [M + H]+ 272.11757, obtained 272.11740.

4. Conclusions

We obtained (1R,4S,5S)-5-((3-hydroxypropyl)amino)-4-((1-methyl-1H-tetrazol-5-yl)thio)
cyclopent-2-en-1-ol (3c) through bicyclic vinyl aziridine ring-opening reaction, with 1-
methyl-1H-tetrazole-5-thiol. The reaction was executed under mild (37 °C) and sustainable
(water as reaction medium) conditions. The compound 3c was characterized using 1H
NMR, 13C NMR, HSQC, and HRMS.

Supplementary Materials: The following are available online, Figure S1: 1H NMR spectrum; Figure
S2: 13C-NMR spectrum; Figure S3: HSQC spectrum; Figure S4: HRMS.
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