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Abstract: A novel Cu(II) complex based on the Schiff base obtained by the condensation of ortho-
vanillin with gamma-aminobutyric acid was synthesized. The compounds are physico-chemically
characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Vis. The complex and the Schiff base
ligand are further structurally identified by single crystal X-ray diffraction and 1H and 13C-NMR,
respectively. The results suggest that the Schiff base are synthesized in excellent yield under mild
reaction conditions in the presence of glacial acetic acid and the crystal structure of its Cu(II) complex
reflects an one-dimensional polymeric compound. The molecular structure of the complex consists
of a Cu(II) ion bound to two singly deprotonated Schiff base bridging ligands that form a CuN2O4

chelation environment, and a coordination sphere with a disordered octahedral geometry.

Keywords: imine; Schiff base; X-ray crystallographic analysis; Cu(II) complex; gamma-amino acid

1. Introduction

Schiff bases have attracted intensive scientific interest mainly because of their ease of
preparation, diverse structural and physico-chemical characteristics, metal binding affinity,
pharmacological and physiological properties. They have been extensively used as ligands
in the coordination chemistry of main group and transition metal ions. These compounds
and their metal complexes have been proved very effective as catalysts in several biological
systems, dyes, polymers, and as bioactive agents in the pharmaceutical and medicinal
fields presenting exceptional antibacterial, antioxidant, antifungal, anticancer, antidiabetic,
and diuretic properties [1–5].

A well-established sub-category of Schiff bases is the amino acid-based Schiff bases.
The incorporation of amino acids in the Schiff base structure enables the design of ligands
with enhanced chirality and multidentate functionality [6]. Several literature reports
confirm the involvement of amino acid Schiff base complexes in a variety of chemical and
biological processes such as the catalysis of transamination, carboxylation and racemization
reactions [7], the oxidation of sulfides and olefins, in polymerization processes, and the
decomposition of H2O2 [8]. Moreover, it has been proved that amino acid Schiff base
complexes can be used as radiotracers in nuclear medicine [9], and as anticancer and
antibacterial agents [10,11].

Until today, a large number of crystallographically characterized metal complexes of
alpha- and beta-amino acid Schiff bases have been reported in the literature [12,13]. However,
only a few metal complexes of Schiff bases derived from gamma-amino acids have been
structurally characterized via X-ray crystallography [14]. Herein, we report the synthesis
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of a novel Cu(II) complex based on a new Schiff base obtained by the condensation of ortho-
vanillin with gamma-aminobutyric acid. The compounds have been physico-chemically
characterized by elemental analysis, HR-ESI-MS, FT-IR, and UV-Visible spectrophotometry.
The complex and the Schiff base ligand have been further structurally identified by single
crystal X-ray and 1H and 13C-NMR, respectively.

2. Results and Discussion
2.1. Synthesis

The Schiff base 3 was synthesized in one step by mixing equimolar quantities of
ortho-vanillin 1 and gamma-aminobutyric acid 2 in the minimum amount of refluxing
MeOH (Scheme 1). After filtration and washing, product 3 was obtained in very good
yield (76%). In order to further improve the yield of the reaction, the application of (a)
glacial acetic acid as a mild acidic agent appropriate for such couplings [15,16], (b) sulfuric
acid as a dehydrating acid [17], and (c) piperidine as one the most commonly used bases
for Schiff base formation of vanillin derivatives [18] was explored (Table 1). Piperidine
seemed to partially “quench” the coupling, leading to lower yields, even after forcing
the product precipitation. The presence of glacial acetic acid increased the yield of the
reaction to almost quantitative (86%), whereas using concentrated sulfuric acid was proved
to be unsuccessful.
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Table 1. Optimization of the reaction conditions regarding the additive a.
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Entry Additive Yield (%) b

1 none 76
2 CH3COOH 86
3 H2SO4

c trace amount
4 piperidine 58 c

a The reactions were carried out using 1.0 mmol of each starting compound and 2 drops of each
additive (0.1 mL), under reflux for 2 h. b Isolated yield after concentration of the solvent to 2/3 of its
volume. c Isolated yield, after further concentration of the solvent to 1/3 of its volume and storage at
−18 ◦C for 48 h.

The structure and purity of compound 3 was confirmed by 1H and 13C-NMR (Supple-
mentary Information, Figures S1–S6). As expected, the methylene protons of the amino acid
unit appeared in the aliphatic region of the 1H-NMR spectrum. H-4 protons (see Figure 1A
numbering) were shifted downfield at 3.60 ppm because of the nitrogen atom. The aromatic
protons appeared according to the standard shift and splitting pattern of 1,2,3-trisubstituted
benzene rings at 6.79, 7.00, and 7.02 ppm. The 13C-NMR spectrum is in good agreement
with the structure and reported data [19,20]. The low-field signals of azomethine, C-7 and
carboxylic carbons were assigned by 2D-NMR experiments (Supplementary Information,
Figures S3–S6) at 166.2, 151.9, and 174.0 ppm, respectively.
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NOESY experiment demonstrated that 3 has the same configuration with the coordi-
nated ligand, since a signal corresponding to azomethine proton (8.53 ppm) and H-9 of the
ring (7.02 ppm) proximity was detected, thus proving the expected E-configuration.

Under standard NMR experiment conditions (0.05 M in DMSO-d6) we were not able
to distinguish the phenolic OH proton from the carboxylic OH proton, due to broadening
of these peaks, leading to the absence of 2D signals. Even by modifying the conditions (con-
centration, temperature, and/or solvent) we did not observe the desired peak sharpening
or appearance of any additional clarifying 2D signals. Since the structural elucidation by
NMR of similar Schiff bases systems incorporating an ortho-hydroxy phenyl unit have been
reported in the literature [19,20], the broad peak at 12.2 ppm was assigned to the carboxylic
proton, whereas the lower-field broad peak at 13.7 ppm was assigned to the deshielded
phenolic proton.

For the synthesis of the heteroleptic Cu(II)-Schiff base complex (4) (Scheme 2) a
thorough exploration of the experimental conditions regarding solvent system, pH, temper-
ature, metal:ligand stoichiometry, and crystallization process was performed. Subsequently,
complex 4 was synthesized from the reaction of Cu(NO3)2·3H2O with the Schiff base in
MeOH at 60 ◦C under reflux conditions, in the presence of sodium hydroxide (NaOH). The
overall stoichiometric reaction leading to complex 4 is shown schematically below:
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Scheme 2. Stoichiometric reaction of the heteroleptic Cu(II)-Schiff base complex (4).

The reaction mixture was left to evaporate slowly at room temperature. Dark green
crystalline material emerged in the reaction described above, the analytical composition
of which was consistent with the formulation in complex 4. Positive identification of the
crystalline product was achieved by elemental analysis, FT-IR, HR-ESI-MS, and X-ray
crystallographic analysis of isolated single crystals from complex 4.

Both compounds are stable in air for fairly long periods of time. They readily dissolve
in H2O, methanol (MeOH), dimethylacetamide (DMA), dimethyl sulfoxide (DMSO), and
dimethylformamide (DMF) and are insoluble in acetone, acetonitrile, and dichloromethane
at room temperature.

2.2. Description of X-ray Crystallographic Structure

The X-ray crystal structure of 4 reveals a discrete solid-state lattice. The molecular
structure of 2 is given in Figure 1A; selected bond distances and angles are listed in Table 2.
Complex 4 crystallizes in the monoclinic space group C2/c. The crystal structure reflects an
one-dimensional polymeric compound forming infinite chains along the c crystallographic
axis. The unit cell contains four mononuclear [Cu(C12H14NO4)2] monomeric complex units
and half of a badly disordered lattice MeOH molecule. The molecular structure of the
monomer 4 consists of a Cu(II) ion bound to two singly deprotonated Schiff base bridging
ligands which coordinate through their deprotonated phenolato oxygen atom, the imino
nitrogen atom, and the double bonded oxygen atoms of the protonated carboxylic acid
moieties from two neighboring molecules, thereby giving rise to a CuIIN2O4 chelation
environment, and a coordination sphere reflecting a disordered octahedral geometry
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(Figure 1A). The Cu-N bond lengths are 2.005(2) Å whereas the Cu-O bond lengths are
in the range between 1.9272(16) and 2.6167(19) Å. These values are very similar to the
related bond distances reported in the literature [21]. Intermolecular hydrogen-bonding
interactions arise between the deprotonated phenolic oxygen atoms and the protonated
oxygen atoms of the carboxylic groups from the neighboring monomeric complex units
enforcing the polymeric chains formation and resulting in the final 1D crystal lattice
(Figure 1B, Supplementary Information Table S1).
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Figure 1. (A) The fully coordinated monomeric complex unit of 4. Carbon group hydrogen atoms and lattice solvent
molecule have been omitted. (B) Part of the polymeric chain of 4 and hydrogen bonding interactions (light blue dotted lines).

Table 2. Bond lengths [Å] and angles [o] for 4.

Bond Lengths (Å)

Cu(1)—O(1) i 2.6167 (19) O(4)—C(12) 1.429 (3)
Cu(1)—O(1) ii 2.6167 (19) O(5)—O(5) iv 1.449 (5)
Cu(1)—N(1) iii 2.005 (2) C(1)—C(2) 1.505 (4)
Cu(1)—O3 iii 1.9272 (16) C(2)—C(3) 1.514 (3)
Cu(1)—N(1) 2.005 (2) C(3)—C(4) 1.510 (3)
Cu(1)—O(3) 1.9272 (16) C(5)—C(6) 1.443 (4)
N(1)—C(4) 1.476 (3) C(6)—C(7) 1.392 (4)
N(1)—C(5) 1.282 (3) C(6)—C(11) 1.406 (4)
O(1)—C(1) 1.203 (3) C(7)—C(8) 1.421 (3)
O(2)—C(1) 1.308 (3) C(8)—C(9) 1.389 (5)
O(3)—C(7) 1.325 (3) C(9)—C(10) 1.373 (5)
O(4)—C(8) 1.363 (4) C(10)—C(11) 1.354 (5)
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Table 2. Cont.

Angles (◦)

O(1) i—Cu(1)—O(1) ii 180 C(8)—O(4)—C(12) 117.5 (3)
O(1) i—Cu(1)—N(1) iii 93.65 (7) O(2)—C(1)—O(1) 122.9 (2)
O(1) ii—Cu(1)—N(1) iii 86.35 (7) O(2)—C(1)—C(2) 114.0 (2)
O(1) i—Cu(1)—O(3) iii 83.34 (7) O(1)—C(1)—C(2) 123.1 (2)
O(1) ii—Cu(1)—O(3) iii 96.66 (7) C(1)—C(2)—C(3) 112.2 (2)
N(1) iii—Cu(1)—O(3) iii 90.23 (8) C(2)—C(3)—C(4) 112.8 (2)

O(1) i—Cu(1)—N(1) 86.35 (7) C(3)—C(4)—N(1) 110.5 (2)
O(1) ii—Cu(1)—N(1) 93.65 (7) N(1)—C(5)—C(6) 126.7 (2)
N(1) iii—Cu(1)—N(1) 180 C(5)—C(6)—C(7) 121.9 (2)
O(3) iii—Cu(1)—N(1) 89.77 (8) C(5)—C(6)—C(11) 117.6 (3)
O(1) i—Cu(1)—O(3) 96.66 (7) C(7)—C(6)—C(11) 120.5 (3)
O(1) ii—Cu(1)—O(3) 83.34 (7) C(6)—C(7)—O(3) 123.9 (2)
N(1) iii—Cu(1)—O(3) 89.77 (8) C(6)—C(7)—C(8) 118.2 (3)
O(3) iii—Cu(1)—O(3) 180 O(3)—C(7)—C(8) 117.8 (3)
N(1)—Cu(1)—O(3) 90.23 (8) C(7)—C(8)—O(4) 114.6 (3)
Cu(1)—N(1)—C(4) 120.85 (16) C(7)—C(8)—C(9) 119.2 (3)
Cu(1)—N(1)—C(5) 122.71 (18) O(4)—C(8)—C(9) 126.2 (3)
C(4)—N(1)—C(5) 116.4 (2) C(8)—C(9)—C(10) 121.5 (3)

Cu(1) v—O(1)—C(1) 124.19 (17) C(9)—C(10)—C(11) 120.1 (3)
Cu(1)—O(3)—C(7) 123.43 (16) C(6)—C(11)—C(10) 120.5 (3)

Cu(1)—O(1) i 2.6167 (19) O(4)—C(12) 1.429 (3)
Cu(1)—O(1) ii 2.6167 (19) O(5)—O(5) iv 1.449 (5)

Symmetry codes: i x, y, z − 1; ii –x + 3/2, −y + 3/2, −z + 3; iii −x + 3/2, −y + 3/2, −z + 2; iv −x + 1, y, −z + 1/2;
v x, y, z + 1.

2.3. FT-IR Spectroscopy

The FT-IR spectrum of the Schiff base 3 (Supplementary Information, Figure S7) shows
a weak band at 3419 cm−1, characteristic of the ν(OH) vibrations [22], which disappears in
the spectrum of complex 4 (Supplementary Information, Figure S7), indicating deprotona-
tion of the OH group upon binding with the Cu(II) ion. The ν(C=N) vibrations are observed
at 1643 cm−1 for Schiff base 3 and at 1598 cm−1 for complex 4, respectively. This lowering
of resonance frequency by 45 cm−1 for the C=N vibration clearly reveals the coordination
of the Cu(II) ion with the imine nitrogen. Moreover, both spectra show broad absorption
bands at about 3068–2758 cm−1 and 3089–2818 cm−1, respectively, which are assigned to
the ν(C–H) stretching vibrations of the aromatic moieties. The absorption bands located at
526 cm−1 and 465 cm−1 in the spectrum of complex 4 can be assigned to the ν(Cu-O) and
ν(Cu-N) vibrations, respectively.

2.4. UV-Vis Spectroscopy

The UV–Vis spectra of the Schiff base 3 and complex 4 were recorded in MeOH at a
concentration of 10−5 M (Figure 2). The electronic absorption spectrum of the Schiff base
shows an absorption band at 293 nm and 417 nm that can be assigned to the π→π* transi-
tions in the aromatic ring and n→π* transitions of the imine moiety, respectively. In the
spectrum of 4, both absorption bands present significant hypsochromic and hyperchromic
shifts compared to the free Schiff base, which can be attributed to the increased conjugation
of the Cu(II)-Schiff base system. More specifically, the absorption band, indicative of the
π→π* transitions, appears at 274 nm whereas the absorption band that arises from the
n→π* transitions is located at 381 nm. No d→d transitions were observed in the spectrum
of 4, potentially because of the low concentration (10−5 M) of the solution. However, addi-
tional measurements at a higher concentration (10−3 M) (inset graph in Figure 2) showed a
broad absorption band at 682 nm, indicative of d→d transitions.
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3. Materials and Methods

The following starting materials were purchased from commercial sources (Sigma,
Fluka, St. Louis, MO, USA) and were used without further purification: Gamma-aminobutyric
acid, ortho-vanillin, copper nitrate trihydrate [Cu(NO3)2·3H2O], and sodium hydroxide
(NaOH) pellets. Solvents: ethanol (EtOH), methanol (MeOH). The isolated and dried under
vacuum at room temperature compounds are air-stable. Fourier transform-infrared (FT-IR)
spectra were recorded on a Perkin Elmer 1760X spectrometer (Perkin-Elmer, San Francisco,
CA, USA). A ThermoFinnigan Flash EA 1112 CHNS elemental analyzer (Waltham, MA,
USA) was used for the simultaneous determination of carbon, hydrogen, and nitrogen (%).
The analyzer operation is based on the dynamic flash combustion of the sample (at 1800 ◦C)
followed by reduction, trapping, complete GC separation, and detection of the products.
The instrument is fully automated and controlled by PC via the Eager 300 dedicated soft-
ware (Thermo Fischer, Waltham, MA, USA). High resolution electrospray spray ionization
mass spectra (HR-ESI-MS) of the Schiff base (1) and its Cu(II) complex (2) were obtained on
UHPLC LC-MSn Orbitrap Velos-Thermo instrument (Thermo Scientific; Bremen, Germany)
in the Institute of Biology, Medicinal Chemistry and Biotechnology of the National Hel-
lenic Research Foundation. NMR spectra were recorded with a Bruker Avance 500 MHz
spectrometer (Bruker, Rheinstetten, Germany) operating at 500 MHz (1H) and 125 MHz
(13C). Chemical shifts are reported in ppm relative to DMSO-d6 (1H: δ = 2.50 ppm, 13C:
δ = 39.52 ± 0.06 ppm). NMR spectra assignments follow the numbering of the crystallo-
graphic analysis (Figure 1A). UV-Visible (UV-Vis) measurements were carried out on a
Hitachi U2001 spectrophotometer (Hitachi, Tokyo, Japan) in the range from 200 to 800 nm.

3.1. Synthesis
3.1.1. (E)-4-[(2-Hydroxy-3-methoxybenzylidene)amino]butanoic Acid (3)

Ortho-vanillin 1 (152 mg, 1.0 mmol) dissolved in 0.5 mL MeOH, was added in a
refluxing methanolic solution (6.5 mL) of gamma-aminobutyric acid 2 (103 mg, 1.0 mmol).
Two drops of glacial acetic acid (0.1 mL, 1.75 mmol) were added and the resulting clear
solution was stirred for 2 h. Upon completion of the reaction, the solvent was allowed to
distill off by removing the reflux apparatus until reaching approximately 2/3 of its volume.
Then, the solution was cooled to room temperature to afford the product as crystal needles.
The bright yellow product (204 mg, 0.86 mmol, 86%) was filtered, washed once with a small
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volume of ice-cold MeOH and dried under vacuum. 1H-NMR (500 MHz, DMSO-d6): 1.86
(quint, J = 7.0 Hz, 2H, H-3), 2.29 (t, J = 7.0 Hz, 2H, H-2), 3.60 (t, J = 7.0 Hz, 2H, H-4), 3.77
(s, 3H, OMe), 6.79 (t, J = 7.9 Hz, 1H, H-10), 7.00 (t, J = 7.9 Hz, 1H, H-11), 7.02 (t, J = 7.9 Hz,
1H, H-9), 8.53 (s, 1H, H-5), 12.2 (br, 1H, COOH), 13.7 (br, 1H, OH) ppm; 13C-NMR (125 MHz,
DMSO-d6): 25.8 (C-3), 31.2 (C-2), 55.7 (OMe), 57.0 (C-4), 114.7 (C-9), 117.5 (C-10), 118.2 (C-6),
123.1 (H-11), 148.1 (C-8), 151.9 (C-7), 166.2 (C-5), 174.0 (COOH) ppm; Anal. Calcd for
1, C12H15NO4: C, 60.75; H, 6.37; N, 5.90. Found: C, 60.69; H, 6.31; N, 5.94. HR-ESI-MS
(positive mode), calcd. for [(C12H15NO4) + H]+ m/z = 238.1079, found m/z = 238.1076.

3.1.2. Synthesis of [Cu(C12H14NO4)2]n·nO (4)

To a solution of ortho-vanillin 1 (0.15 g, 1.0 mmol) in MeOH (10 mL) gamma-aminobutyric
acid 2 (0.10 g, 1.0 mmol) was added under stirring. The resulting yellow solution was
refluxed for two hours at 60 ◦C under continuous stirring and then cooled to room temper-
ature. Subsequently, a solution of Cu(NO3)2·3H2O (0.12 g, 0.5 mmol) in MeOH (10 mL)
was added under continuous stirring. The resulting clear, green reaction mixture was
refluxed for an additional 2 h at 60 ◦C and then cooled to room temperature. To that,
NaOH (0.04 g, 1 mmol) was added under continuous stirring. The resulting homogeneous
dark green reaction mixture was refluxed at 60 ◦C for an additional 2 h and then cooled to
room temperature. Subsequently, the reaction flask was left to evaporate slowly at room
temperature. One week later, dark green plate-like crystalline material precipitated at the
bottom of the flask. The product was isolated by filtration and dried in vacuo. Yield: 0.14 g
(52%). Anal. Calcd for 2, [Cu(C12H14NO4)2]n·nO. (C24H28CuN2O9, Mr 540.04): C, 53.38;
H, 5.23; N, 5.19. Found: C, 53.36; H, 5.18; N, 5.14. HR-ESI-MS (positive mode), calcd, for
{[Cu(C12H14NO4)2] + H}+ m/z = 536.1219, found m/z = 536.1215.

3.2. X-ray Crystal Structure Determination

X-ray quality crystals of 4 were grown from MeOH. Crystals of 4 suitable for X-ray
diffraction, with dimensions 0.14 × 0.09 × 0.05 mm were taken from the mother liquor
and mounted at room temperature on a Bruker Kappa APEX 2 diffractometer (Bruker AXS,
Madison, WI, USA), equipped with a triumph monochromator, using Mo Kα radiation.
Cell dimensions and crystal system determination were performed using 172 high θ
reflections with 10◦ < θ < 20◦. Data collection (ϕ- and ω- scans) and processing (cell
refinement, data reduction and numerical absorption correction based on dimensions)
were performed using the SAINT and SADABS programs [23,24]. The structure was
solved by the SUPERFLIP package [25]. The CRYSTALS version 14.61 build 6236 program
package was used for structure refinement (full-matrix least-squares methods on F2) and
all subsequently remaining calculations [26]. Molecular illustrations were drawn using
the CAMERON crystallographic package [27]. All non-hydrogen non-disordered atoms
were anisotropically refined. All hydrogen atoms were found at their expected positions
and were refined using proper riding constraints to the pivot atoms. Crystallographic
details for 4 are summarized in Table S3 (Supplementary Information). Further details
on the crystallographic studies as well as atomic displacement parameters are given as
Supporting Information as well as in the form of cif file.

4. Conclusions

Two novel compounds, the Schiff base (E)-4-[(2-hydroxy-3-methoxybenzylidene)-
amino]butanoic acid and its Cu(II) complex were prepared in good yields and purity. The
compounds have been physico-chemically and structurally characterized via elemental
analysis, HR-ESI-MS, FT-IR, UV-Vis, NMR, and single crystal X-ray diffraction. The crystal
structure of the produced Cu(II) complex reflects an one-dimensional polymeric compound.
The Cu(II) ion is bound to two singly deprotonated Schiff base bridging ligands forming a
CuIIN2O4 chelation environment, and a coordination sphere with a disordered octahedral
geometry. Further investigation is underway to determine the biological activities of a
library of analogue derivatives.
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Supplementary Materials: The following are available online. Table S1. Hydrogen bonds in 4.
Table S2: Summary of crystal, intensity collection and refinement data for [Cu(C12H14NO4)2]n·nO
(4). Figure S1. 1H-NMR spectrum of compound 3 in DMSO-d6. Figure S2. 13C-NMR spectrum
of compound 3 in DMSO-d6. Figure S3. 1H-1H COSY spectrum of compound 3 in DMSO-d6.
Figure S4. 1H-13C HMBC spectrum of compound 3 in DMSO-d6. Figure S5. 1H-13C HSQC spectrum
of compound 3 in DMSO-d6. Figure S6. 1H-1H NOESY spectrum of compound 3 in DMSO-d6.
Figure S7. FT-IR spectra of Schiff base 3 and complex 4. Figure S8. HRMS Spectra of the Schiff base
3. Figure S9. HRMS Spectrum of the complex 4. CCDC 2051769 (4) contains the supplementary
crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.
ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB21EZ, UK; fax: (+44)-1223-336-033; or deposit@ccde.cam.ac.uk).
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