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Abstract: Imidazolines are a valuable class of organic compounds, namely ligands of imidazoline
receptors, chiral ligands for metal catalysis, synthetic intermediates. The title compound has been
prepared through a modified procedure, employing N-benzylethylenediamine and thiophene-2-
carbaldehyde under the action of N-bromosuccinimide (NBS) in dichloromethane (DCM) in a good
78% yield.
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1. Introduction

Five-membered heterocycles with two or more heteroatoms find wide application in medicinal
chemistry and other fields [1–8]. The innate affinity of imidazolines to imidazoline-type receptors
has attracted a significant amount of effort in the synthesis and bioactivity investigations of these
compounds. The endeavors in the field resulted in the appearance of marketed drugs clonidine,
moxonidine, idazoxane, cirazolline, iodofexidine, efaroxan, and others [9–14]. Moreover, imidazolines
are renowned ligands in transition metal catalysis [15–18] and useful synthetic intermediates [19–21].
Numerous syntheses of imidazolines have been published, and common drawbacks include the
need for harsh conditions or expensive catalysts [22–27]. A general preparative procedure for the
synthesis of imidazolines under mild conditions was developed by Fujioka et al. [28]. In that approach,
diamine was mixed with an aldehyde in dichloromethane (DCM) or tert-butyl methyl ether (TBME)
to form an aminal, which was oxidized by a subsequent treatment with N-bromosuccinimide (NBS).
Notwithstanding the broad scope and generality of the method, comparatively low yields were
obtained for N-benzylethylenediamine due to reluctant aminal formation with a more sterically
crowded amine. Following our interest in synthesis and chemistry of 1,2-diamines [29–31], herein, we
report the synthesis of previously unknown 1-benzyl-2-(thien-2-yl)-4,5-dihydro-1H-imidazole through
a slightly modified Fujioka’s procedure, giving the title compound in a good 78% yield.

2. Results

The reaction of thiophene-2-carbaldehyde (1) with N-benzylethylenediamine (2) was carried
out in DCM at 0 ◦C for 30 min and resulted in the in situ formation of aminal 3. Subsequent
addition of NBS and overnight stirring at rt furnished the target molecule 4 in 78% yield (Scheme 1).
The structure determination of the title compound 4 was achieved with 1H and 13C NMR spectroscopy,
IR spectroscopy and mass spectrometry (for details, see Supplementary Materials). The brutto formula
was devised with the help of high-resolution mass spectrometry.
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Scheme 1. Preparation of thienyl-substituted imidazoline 4. 

3. Discussion. 

Comparing the above procedure to Fujioka’s original work, the following differences were 
noted: Firstly, the use of nitrogen atmosphere does not grant any benefits and the reaction can be 
performed in a closed vessel without nitrogen; secondly, and more importantly, the use of more 
concentrated solutions are crucial for the effective reaction. Thus, carrying out the reaction in 0.32 M 
DCM solution instead of 0.1 M gives the product 4 with 78% yield, comparing to 65% under greater 
dilution. It is worth noting that the procedure also works excellently for p-methoxybenzaldehyde and 
p-nitrobenzaldehyde, giving the corresponding imidazolines. 

4. Materials and Methods 

4.1. General 

Starting reagents were purchased from commercial sources and were used without any 
additional purification. 1H and 13C NMR spectra were acquired on a Jeol JNM-ECA 600 spectrometer 
(JEOL Ltd., Tokyo, Japan, with operating frequencies of 600 and 150 MHz, respectively) at room 
temperature and referenced to the residual signals of the solvent. The solvent used for NMR was 
CDCl3. Chemical shifts are reported in parts per million (δ/ppm). Coupling constants (J) are reported 
in Hertz (Hz). The peak patterns are indicated as follows: s, singlet; t, triplet; m, multiplet. Infrared 
spectra were measured on an Infralum FT-801 FT/IR instrument. The wavelengths are reported in 
reciprocal centimeters (ν max/cm−1). Mass spectra were recorded with LCMS-8040 Triple quadrupole 
liquid chromatograph mass spectrometer from Shimadzu (Shimadzu corp., Japan, ESI) and Kratos 
MS-30 mass-spectrometer (Shimadzu division, Japan, EI, 70 eV). HRMS spectra were recorded on a 
Bruker MicrOTOF-Q II (Bruker corp., Bremen, Germany). Elemental analysis was performed with a 
Euro Vector EA-3000 elemental analyzer (EuroVector S.p.A., Milan, Italy). The reaction progress was 
monitored by TLC and the spots were visualized under UV light (254 or 365 nm). Column 
chromatography was performed using silica gel (60–75 mesh). Melting points were determined on 
an SMP-10 apparatus and were uncorrected. Solvents were distilled and dried according to standard 
procedures. 

4.2. 1-Benzyl-2-(thien-2-yl)-4,5-dihydro-1H-imidazole (4) 

The mixture of thiophene-2-carbaldehyde (1) (3.55 mL, 38 mmol) and N-benzylethylenediamine 
(2) (6.00 mL, 40 mmol) in dry CH2Cl2 (125 mL) was stirred at 0 °C for 30 min, NBS (7.12 g, 40 mmol) 
was added to the mixture and the resulting solution was stirred overnight at rt. The reaction was 
diluted by CH2Cl2 (125 mL) and quenched by the addition of a mixture of Na2S2O5 aq (140 mL) and 
10% NaOH aq (70 mL), the organic layer was washed by 10% NaOH aq (70 mL), dried over 
anhydrous Na2SO4 and evaporated in vacuo. The residue was purified by SiO2 column 
chromatography (CHCl3/MeOH, 100:0 → 99:1). TLC: Rf 0.35 (CHCl3/MeOH/NH3, 10:1:0.1,). 
Recrystallization gave the title compound 4 (7.18 g, 78%) as yellow needles; m.p. 52–53 °C (MeCN). 
1H NMR (CDCl3) δ 3.50 (t, 2 H, J 10.2), 3.93 (t, 2 H, J 10.2), 4.57 (s, CH2, 2 H), 7.02–7.07 (m, 1 H), 7.27–
7.32 (m, 3 H), 7.37 (t, 2 H, J 7.6), 7.41–7.45 (m, 2 H). 13С NMR δ 160.9 (Cq), 137.5 (Cq), 131.7 (Cq), 129.0 
(CH), 128.9 (CH), 128.8 (CH), 127.7 (2C, CH), 127.5 (CH), 127.1 (2C, CH), 52.9 (CH2), 52.2 (CH2), 51.8 
(CH2). IR (cm−1) ν = 3054 (w), 2930 (w), 2865 (m), 1709 (m), 1597 (m), 1522 (m), 1443 (m), 1358 (m), 1266 

Scheme 1. Preparation of thienyl-substituted imidazoline 4.

3. Discussion

Comparing the above procedure to Fujioka’s original work, the following differences were noted:
Firstly, the use of nitrogen atmosphere does not grant any benefits and the reaction can be performed
in a closed vessel without nitrogen; secondly, and more importantly, the use of more concentrated
solutions are crucial for the effective reaction. Thus, carrying out the reaction in 0.32 M DCM solution
instead of 0.1 M gives the product 4 with 78% yield, comparing to 65% under greater dilution. It is worth
noting that the procedure also works excellently for p-methoxybenzaldehyde and p-nitrobenzaldehyde,
giving the corresponding imidazolines.

4. Materials and Methods

4.1. General

Starting reagents were purchased from commercial sources and were used without any additional
purification. 1H and 13C NMR spectra were acquired on a Jeol JNM-ECA 600 spectrometer (JEOL Ltd.,
Tokyo, Japan, with operating frequencies of 600 and 150 MHz, respectively) at room temperature and
referenced to the residual signals of the solvent. The solvent used for NMR was CDCl3. Chemical shifts
are reported in parts per million (δ/ppm). Coupling constants (J) are reported in Hertz (Hz). The peak
patterns are indicated as follows: s, singlet; t, triplet; m, multiplet. Infrared spectra were measured
on an Infralum FT-801 FT/IR instrument. The wavelengths are reported in reciprocal centimeters
(νmax/cm−1). Mass spectra were recorded with LCMS-8040 Triple quadrupole liquid chromatograph
mass spectrometer from Shimadzu (Shimadzu corp., Japan, ESI) and Kratos MS-30 mass-spectrometer
(Shimadzu division, Japan, EI, 70 eV). HRMS spectra were recorded on a Bruker MicrOTOF-Q II
(Bruker corp., Bremen, Germany). Elemental analysis was performed with a Euro Vector EA-3000
elemental analyzer (EuroVector S.p.A., Milan, Italy). The reaction progress was monitored by TLC and
the spots were visualized under UV light (254 or 365 nm). Column chromatography was performed
using silica gel (60–75 mesh). Melting points were determined on an SMP-10 apparatus and were
uncorrected. Solvents were distilled and dried according to standard procedures.

4.2. 1-Benzyl-2-(thien-2-yl)-4,5-dihydro-1H-imidazole (4)

The mixture of thiophene-2-carbaldehyde (1) (3.55 mL, 38 mmol) and N-benzylethylenediamine
(2) (6.00 mL, 40 mmol) in dry CH2Cl2 (125 mL) was stirred at 0 ◦C for 30 min, NBS (7.12 g, 40 mmol) was
added to the mixture and the resulting solution was stirred overnight at rt. The reaction was diluted by
CH2Cl2 (125 mL) and quenched by the addition of a mixture of Na2S2O5 aq (140 mL) and 10% NaOH
aq (70 mL), the organic layer was washed by 10% NaOH aq (70 mL), dried over anhydrous Na2SO4

and evaporated in vacuo. The residue was purified by SiO2 column chromatography (CHCl3/MeOH,
100:0→ 99:1). TLC: Rf 0.35 (CHCl3/MeOH/NH3, 10:1:0.1,). Recrystallization gave the title compound 4
(7.18 g, 78%) as yellow needles; m.p. 52–53 ◦C (MeCN). 1H NMR (CDCl3) δ 3.50 (t, 2 H, J 10.2), 3.93
(t, 2 H, J 10.2), 4.57 (s, CH2, 2 H), 7.02–7.07 (m, 1 H), 7.27–7.32 (m, 3 H), 7.37 (t, 2 H, J 7.6), 7.41–7.45
(m, 2 H). 13C NMR δ 160.9 (Cq), 137.5 (Cq), 131.7 (Cq), 129.0 (CH), 128.9 (CH), 128.8 (CH), 127.7 (2C,
CH), 127.5 (CH), 127.1 (2C, CH), 52.9 (CH2), 52.2 (CH2), 51.8 (CH2). IR (cm−1) ν = 3054 (w), 2930 (w),
2865 (m), 1709 (m), 1597 (m), 1522 (m), 1443 (m), 1358 (m), 1266 (m), 999 (m), 850 (w), 732 (w), 700
(m). EI-MS (m/z, M+): 243 (100%), 244 (16), 245 (5). HRMS (TOF ES+): m/z [M + H]+ calculated for
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C14H14N2S: 243.0951; found: 243.0950. Anal. calcd for C14H14N2S: C, 69.39; H, 5.82; N, 11.56%; found:
C, 69.55; H, 5.78; N, 11.60%.

Supplementary Materials: Copies of the 1H, 13C NMR, and HRMS spectra are available online.
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