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Abstract: Reaction of 3,5-dichloro-4H-1,2,6-thiadiazin-4-one with (R) and (S)-3-methylmorpholines (2
equiv), in THF, at ca. 20 ◦C gave (R) and (S)-3-chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-
4-ones in 95 and 97% yields, respectively. The new compounds were fully characterized.
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1. Introduction

Morpholines are important saturated nitrogen-containing heterocycles and are utilized in a number
of clinically used pharmaceuticals [1]. Among the nitrogen-containing heterocycles, morpholines
rank as 17th in the most frequently used in U.S. FDA approved drugs [2], while other uses include
insecticides [3] and corrosion inhibitors [4]. Examples of morpholine containing drugs include the
analgesic phenadoxone, the analeptic doxapram, the β blocker timolol, and the Epidermal Growth
Factor Receptor (EGFR) kinase inhibitor gefitinib [5] (Figure 1).
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1. Introduction 

Morpholines are important saturated nitrogen-containing heterocycles and are utilized in a 
number of clinically used pharmaceuticals [1]. Among the nitrogen-containing heterocycles, 
morpholines rank as 17th in the most frequently used in U.S. FDA approved drugs [2], while other 
uses include insecticides [3] and corrosion inhibitors [4]. Examples of morpholine containing drugs 
include the analgesic phenadoxone, the analeptic doxapram, the β blocker timolol, and the Epidermal 
Growth Factor Receptor (EGFR) kinase inhibitor gefitinib [5] (Figure 1). 
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Figure 1. Morpholine containing drugs. 

The further tuning of the morpholine’s properties by using an asymmetric 3-methylmorpholine 
has been demonstrated to improve a compound’s biological activity and enhance its physicochemical 
characteristics. There are a number of reports of 3-methylmorpholines, exhibiting a variety of 
biological activities, including anti-cancer [6], anti-HIV [7], and antidiabetic agents [8]. 

The introduction of 3-methylmorpholines in the design of kinase inhibitors can not only enhance 
the potency of a compound, but the methyl group can act as a steric handle to increase the torsion 
between adjacent ring systems. There are a number of examples in the literature where having a 
substituted methylmorpholine has enhanced the potency on target, as well as the selectivity profile 
over close kinome family members (Figure 2) [9–11]. The effects of introducing a methyl group are 
not always additive [12], and the precise addition of the stereochemistry can be critical [13]. These 
steric effects can also be achieved by fluorine [14], by adding a carbon spirocycle [15], or by altering 
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The further tuning of the morpholine’s properties by using an asymmetric 3-methylmorpholine
has been demonstrated to improve a compound’s biological activity and enhance its physicochemical
characteristics. There are a number of reports of 3-methylmorpholines, exhibiting a variety of biological
activities, including anti-cancer [6], anti-HIV [7], and antidiabetic agents [8].

The introduction of 3-methylmorpholines in the design of kinase inhibitors can not only enhance
the potency of a compound, but the methyl group can act as a steric handle to increase the torsion
between adjacent ring systems. There are a number of examples in the literature where having a
substituted methylmorpholine has enhanced the potency on target, as well as the selectivity profile
over close kinome family members (Figure 2) [9–11]. The effects of introducing a methyl group are
not always additive [12], and the precise addition of the stereochemistry can be critical [13]. These
steric effects can also be achieved by fluorine [14], by adding a carbon spirocycle [15], or by altering the
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electronics of the ring system [16]. There are even examples where manipulation of the atropisomerism
can directly affect the kinome selectivity profile [17]. These methods all alter the electronics of the
system and hence can radically influence the selectivity profile of the kinase inhibitor, while the
addition of a methyl group is a more subtle modification with limited electronic character.
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unexplored heterocycles that have applications as plant protectants [18–22], liquid crystals [23], 
organic photovoltaics (OPVs) [24], and potential anti-cancer agents [25]. The chemistry of non-S-
oxidized 1,2,6-thiadiazines has recently been reviewed [26]. Currently, we are developing a series of 
new 1,2,6-thiadiazine building blocks to expand our library of a drug like compounds with potential 
kinome selectivity profiles. For this work, we investigated the 3-methylmorpholine moiety as a 
substituent of 4H-1,2,6-thiadiazin-4-one. We planned to introduce this moiety by a selective 
nucleophilic displacement of the first chloride of dichlorothiadiazinone 1 by 3-methylmorpholine to 
yield 3-methylmorpholine-substituted thiadiazines 2a and 2b. This displacement could occur under 
mild conditions owing to the electrophilic nature of the starting thiadiazine. 

In the future, we plan to further elaborate thiadiazines 2a and 2b by introducing a second 
substituent via displacement of the remaining chloride. The second substituent could be either an 
aryl, amino, alkoxy, or thioaryl group (Scheme 1). Substitutions with alkoxy or thioaryl groups on 
chlorothiadiazines are known [27], while Pd catalysis can be used to introduce aryl (Suzuki or Stille 
[28–30]) or amino groups (Buchwald [31]). 

 
Scheme 1. Planned synthesis of 3-methylmorpholine-substituted thiadiazines 2a and 2b and 
structures of potential derivatives 3. 

2. Results and Discussion 

We reacted 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (1) with 1 equiv. of 3-methylmorpholines and 
1 equiv. of 2,6-lutidine in EtOH at ca. 20 °C [25]. While both reactions led to complete consumption 
of the starting thiadiazine 1 to give the desired products, we noted problems with the isolation and 
stability of products. In particular, the crude product from both reactions after purification by dry 
flash column chromatography showed the presence of unreacted morpholine. This led to the 
degradation of the thiadiazines 2 in a solution that was clearly shown by decoloration of the yellow 
solution. To avoid this problem, we altered the reaction conditions to use 2 equiv. of 3-
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Our interest in the 3-methylmorpholine moiety is part of our ongoing effort to investigate
the biological activity of novel 1,2,6-thiadiazines. Non-S-oxidized 1,2,6-thiadiazines are relatively
unexplored heterocycles that have applications as plant protectants [18–22], liquid crystals [23], organic
photovoltaics (OPVs) [24], and potential anti-cancer agents [25]. The chemistry of non-S-oxidized
1,2,6-thiadiazines has recently been reviewed [26]. Currently, we are developing a series of new
1,2,6-thiadiazine building blocks to expand our library of a drug like compounds with potential
kinome selectivity profiles. For this work, we investigated the 3-methylmorpholine moiety as
a substituent of 4H-1,2,6-thiadiazin-4-one. We planned to introduce this moiety by a selective
nucleophilic displacement of the first chloride of dichlorothiadiazinone 1 by 3-methylmorpholine to
yield 3-methylmorpholine-substituted thiadiazines 2a and 2b. This displacement could occur under
mild conditions owing to the electrophilic nature of the starting thiadiazine.

In the future, we plan to further elaborate thiadiazines 2a and 2b by introducing a second
substituent via displacement of the remaining chloride. The second substituent could be either an
aryl, amino, alkoxy, or thioaryl group (Scheme 1). Substitutions with alkoxy or thioaryl groups
on chlorothiadiazines are known [27], while Pd catalysis can be used to introduce aryl (Suzuki or
Stille [28–30]) or amino groups (Buchwald [31]).
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Scheme 1. Planned synthesis of 3-methylmorpholine-substituted thiadiazines 2a and 2b and structures
of potential derivatives 3.

2. Results and Discussion

We reacted 3,5-dichloro-4H-1,2,6-thiadiazin-4-one (1) with 1 equiv. of 3-methylmorpholines and
1 equiv. of 2,6-lutidine in EtOH at ca. 20 ◦C [25]. While both reactions led to complete consumption
of the starting thiadiazine 1 to give the desired products, we noted problems with the isolation and
stability of products. In particular, the crude product from both reactions after purification by dry flash
column chromatography showed the presence of unreacted morpholine. This led to the degradation of
the thiadiazines 2 in a solution that was clearly shown by decoloration of the yellow solution. To avoid
this problem, we altered the reaction conditions to use 2 equiv. of 3-methylmorpholine [27] in dry
tetrahydrofuran (THF), at ca. 20 ◦C, which led to complete consumption of the starting thiadiazinone 1
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after 1 h. Dilution of the reaction mixture with dichloromethane (DCM), followed by extraction with
1 M HCl to remove unreacted morpholine, led to the isolation of the desired products 2a and 2b as
yellow oils in 95 and 97% yields, respectively (Scheme 2, see SI for NMR spectra in Supplementary
Materials). The products, which were isolated without the need for chromatography, were free of any
residual amines and showed improved stability both neat and in solution. The optical rotation data
showed that the two products were indeed enantiomers ([α]20

D −31 and +32, respectively, for 2a and 2b,
see Materials and Methods).
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We noted that the stereochemistry of the products 2a and 2b was attributed to the enantiomeric
purity of the starting (R)- and (S)-3-methylmorpholines, [α]20

D −13.8 (c 1, CHCl3) and +13.4 (c 1, CHCl3),
respectively. To the best of our knowledge, and in particular, under the mild reaction conditions used
for the above nucleophilic substitutions, chiral 3-methylmorpholines do not epimerize. The possibility
of hindered rotation of the methylmorpholino group and the thiadiazine C(5) position, which could
lead to atropoisomerism and mixtures of diastereoisomers, was not observed by NMR: each compound
showed only five narrow C-signals in the 13C NMR spectra, representative of a rapidly rotating
3-methylmopholino substituent.

This synthetic effort successfully gave the chiral (R) and (S) 3-methylmorpholines 2a and 2b,
which can be of interest to the medicinal and materials science sectors. The chemistry of these two
aminothiadiazines will be further investigated to assess the potential applications.

3. Materials and Methods

The reaction mixture was monitored by TLC using commercial glass-backed thin layer
chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed under UV light at
254 and 365 nm. Tetrahydrofuran (THF) was distilled over CaH2 before use. The UV-vis spectrum
was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer (Perkin-Elmer, Waltham,
MA, USA), and inflections were identified by the abbreviation “inf”. Optical rotation was determined
in a JASCO P-2000 polarimeter. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21
spectrometer (Shimadzu, Kyoto, Japan) with Pike Miracle Ge ATR accessory (Pike Miracle, Madison,
WI, USA), and strong, medium, and weak peaks were represented by s, m, and w, respectively. 1H and
13C NMR spectra were recorded on a Bruker Avance 500 machine (at 500 and 125 MHz, respectively,
(Bruker, Billerica, MA, USA)). Deuterated solvents were used for homonuclear lock, and the signals
were referenced to the deuterated solvent peaks. Attached proton test (APT) NMR studies were
used for the assignment of the 13C peaks as CH3, CH2, CH, and Cq (quaternary). The MALDI-TOF
mass spectrum (+ve mode) was recorded on a Bruker Autoflex III Smartbeam instrument (Bruker).
(R)- and (S)-3-methylmorpholine were purchased from Combi-Blocks (San Diego, CA, USA), and
their optical rotation values were [α]20

D −13.8 (c 1, CHCl3) and +13.4 (c 1, CHCl3), respectively.
3,5-Dichloro-4H-1,2,6-thiadiazin-4-one (1) was prepared according to the literature procedure [27,32].

(R)-3-Chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-4-one (2a). To a stirred mixture of 3,5-dichloro-
4H-1,2,6-thiadiazin-4-one (1) (91.5 mg, 0.500 mmol) in THF (1 mL) at ca. 20 ◦C, was added in one
portion (R)-3-methylmorpholine (101 mg, 1 mmol). The mixture was protected with a CaCl2 drying
tube and stirred at this temperature until the complete consumption of the starting material (TLC, 1 h).
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DCM (10 mL) was then added, and the organic phase washed with 1 M aqueous HCl (2 × 5 mL) and
then with H2O (5 mL), dried over Na2SO4, and evaporated in vacuo to give the title compound 2a
(118 mg, 95%) as a yellow oil; Rf 0.34 (n-hexane/DCM, 50:50); [α]20

D −31 (c 1, CHCl3); (found: C, 38.57;
H, 3.93; N, 16.86. C8H10ClN3O2S requires C, 38.79; H, 4.07; N, 16.96%); λmax(DCM)/nm 276 (log ε 3.70),
314 (3.89), 324 (3.87), 413 (3.51); vmax/cm−1 2982w and 2884w (C-H), 1630s, 1626s, 1493s, 1439m, 1431m,
1427m, 1391w, 1371w, 1317m, 1296m, 1236m, 1196m, 1142m, 1092w, 1076w, 1059w, 1018w, 997w, 983w,
966m, 910m, 889m, 874m, 856m, 822m, 723m; δH(500 MHz; CDCl3) 4.84 (1H, br s, CHO), 4.48 (1H, d,
J 12.8, CHO), 3.93 (1H, dd, J 11.6, 3.4, CHO), 3.76-3.69 (2H, m, CHO & CHN), 3.61 (1H, ddd, J 12.1,
12.1, 2.9, CHN), 3.39 (1H, ddd, J 12.4, 12.4, 3.7, CHN), 1.36 (3H, d, J 6.7, CH3); δC(125 MHz; CDCl3)
158.7 (Cq), 152.5 (Cq), 145.2 (Cq), 70.8 (CH2O), 66.8 (CH2O), 49.5 (CHN), 41.2 (CH2N), 14.9 (CH3); m/z
(MALDI-TOF) 250 (MH+ + 2, 7%), 248 (MH+, 19), 215 (32), 201 (67), 173 (85), 129 (100).

(S)-3-Chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-4-one (2b). To a stirred mixture of 3,5-dichloro-
4H-1,2,6-thiadiazin-4-one (1) (91.5 mg, 0.500 mmol) in THF (1 mL) at ca. 20 ◦C, was added in one
portion (S)-3-methylmorpholine (101 mg, 1 mmol). The mixture was protected with a CaCl2 drying
tube and stirred at this temperature until the complete consumption of the starting material (TLC, 1 h).
DCM (10 mL) was then added, and the organic phase washed with 1 M aqueous HCl (2 × 5 mL) and
then with H2O (5 mL), dried over Na2SO4, and evaporated in vacuo to give the title compound 2b
(120 mg, 97%) as a yellow oil; Rf 0.34 (n-hexane/DCM, 50:50); [α]20

D +32 (c 1, CHCl3); (found: C, 38.62;
H, 3.99; N, 16.79. C8H10ClN3O2S requires C, 38.79; H, 4.07; N, 16.96%); λmax(DCM)/nm 276 (log ε 3.73),
313 (3.91), 323 (3.88), 413 (3.50); vmax/cm−1 2967w and 2864w (C-H), 1632s, 1626s, 1493s, 1439m, 1431m,
1427m, 1391w, 1371w, 1317m, 1296m, 1236m, 1196m, 1140m, 1092w, 1076w, 1059w, 1018w, 997w, 982w,
966m, 908s, 889m, 876m, 855m, 820m, 725m; δH(500 MHz; CDCl3) 4.85 (1H, br s, CHO), 4.48 (1H, d,
J 12.8, CHO), 3.94 (1H, dd, J 11.6, 3.4, CHO), 3.76-3.69 (2H, m, CHO & CHN), 3.61 (1H, ddd, J 12.1,
12.1, 2.9, CHN), 3.39 (1H, ddd, J 12.4, 12.4, 3.7, CHN), 1.37 (3H, d, J 6.7, CH3); δC(125 MHz; CDCl3)
158.7 (Cq), 152.5 (Cq), 145.2 (Cq), 70.8 (CH2O), 66.8 (CH2O), 49.5 (CHN), 41.3 (CH2N), 14.9 (CH3); m/z
(MALDI-TOF) 249 (MH+ + 2, 11%), 247 (MH+, 23), 242 (100), 215 (16), 201 (83), 173 (44), 129 (87).

4. Conclusions

(R) and (S)-3-chloro-5-(3-methylmorpholino)-4H-1,2,6-thiadiazin-4-ones were prepared in high
yields from 3,5-dichloro-4H-1,2,6-thiadiazin-4-one and are the first non-S-oxidized 1,2,6-thiadiazines
containing a chiral center.

Supplementary Materials: Supplementary Materials are available online, mol file and 1H and 13C NMR spectra.
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