

Short Note

3,5-Dithiatricyclo[5.2.1.0^{2,6}]decan-4-one

R. Alan Aitken *, Neil S. Keddie and Alexandra M. Z. Slawin

EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK.; nsk@st-and.ac.uk (N.S.K.); amzs@st-and.ac.uk (A.M.Z.S.)

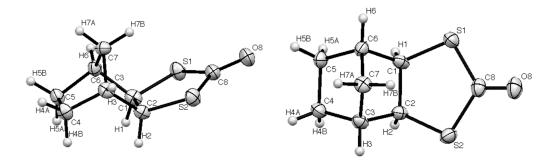
* Correspondence: raa@st-and.ac.uk; Tel.: +44-1334-463865

Received: 27 March 2020; Accepted: 22 April 2020; Published: 24 April 2020

Abstract: The x-ray structure of the title compound has been determined and the structure shows an *exo*-configured planar dithiolanone ring. This is in contrast to the few previous dithiolanones to be characterised crystallographically, which are all twisted.

Keywords: 3,5-dithiatricyclo[5.2.1.0^{2,6}]decan-4-one; x-ray structure; ring planarity

1. Introduction


The title compound 1 was first mentioned in 1985 [1], when it was formed by mercuric acetate oxidation of the corresponding 1,3-dithiolane-2-thione 2 (Scheme 1). However, in that report it was treated as a synthetic intermediate and no analytical or spectroscopic data were given. A short time later, a second preparative method was described [2] involving reaction of the 1,2,3-trithiolane 3, formed from norbornene 4 and sulfur [3], with dichlorocarbene under phase-transfer conditions. In this report it was suggested that the trithiolane 3 reacts with dichlorocarbene to give the thione, 2, but the mechanism by which 2 was converted into 1 was unclear. Perhaps the simplest preparation of 1 involves direct treatment of norbornene 4 with diisopropyl xanthogen disulfide and the radical initiator azobis(isobuytronitrile) (AIBN), which affords 1 directly in 74% yield [4]. Although compound 1 has been characterised by melting point, ¹H and ¹³C-NMR and IR spectroscopy, and elemental analysis [2], its x-ray structure has not been investigated. We have obtained compound 1 repeatedly in low yield as a by-product arising from oxidative degradation of the adduct, 5, formed from norbornene 4 and Bu₃P×CS₂. The ylene 5 can be exploited synthetically in a Wittig reaction with aldehydes to give 2-alkylidene-1,3-dithiolanes [5-7] or, in the presence of extra CS2, in a 1,3-dipolar cycloaddition process with dipolarophiles such as dimethyl acetylenedicarboxylate (DMAD) to give dihydrotetrathiafulvalenes [8]. Furthermore, it can also undergo hydrolysis to give the corresponding 1,3-dithiolane [9]. We describe here determination of the molecular and crystal structure of 1 by xray diffraction. The structure is compared with the few crystal structures previously reported for 1,3dithiolan-2-ones.

Scheme 1. Synthetic routes to 1.

Molbank **2020**, 2020, M1126 2 of 5

2. Results

A sample of compound 1 suitable for x-ray diffraction was obtained from chromatographic purification of the product obtained by reaction of 5 with propargylaldehyde, HC≡C−CHO, and CS₂ (<5% yield). The resulting molecular structure is shown in Figure 1 and selected bond lengths and angles are given in Table 1. The structure features an *exo*-configured dithiolanone ring, which is essentially planar with the expected long C-S bond lengths and correspondingly smaller internal angles at sulfur. The crystal structure features a centrosymmetric arrangement of four molecules in the unit cell (Figure 2). Rather surprisingly, a search of the Cambridge Structural Database (CSD, March 2020 update) revealed only five previous structures containing the 1,3-dithiolan-2-one fragment with at least one sp³ carbon in the ring (Figure 3). These are the parent compound 6 [10], the polychlorinated compound 7 in which the dithiolanone ring is tetrasubstituted [11], the bicyclic diester 8 with a *trans*-disubstituted dithiolanone ring [12], and the Diels–Alder dimer of 4,5-bis(methylene)-1,3-dithiolan-2-one 9 and the derived cobalt complex 10 [13], both of which have the dithiolanone ring fully substituted but with one spiro sp³ centre and one sp² centre.

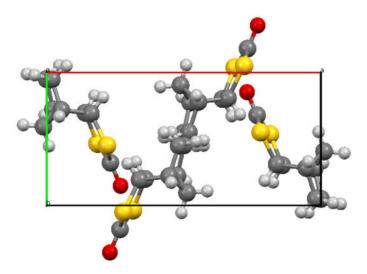


Figure 1. Two views of the molecular structure of **1** with numbering scheme (ORTEP probability ellipsoids at 50%).

Bond	Length/Å	Angle	Value/°
C(1)-C(2)	1.570(8)	C(1)–C(2)–S(2)	113.2(4)
C(1)-S(1)	1.805(6)	C(2)-S(2)-C(8)	99.7(3)
S(1)-C(8)	1.753(6)	S(2)-C(8)-O(8)	122.5(5)
C(8)-O(8)	1.206(7)	O(8)-C(8)-S(1)	123.2 (5)
C(8)-S(2)	1.775(6)	S(2)-C(8)-S(1)	114.4(3)
S(2)-C(2)	1.798(6)	C(8)-S(1)-C(1)	100.4(3)
		S(1)=C(1)=C(2)	112.3(4)

Table 1. Selected bond lengths and angles.

Molbank 2020, 2020, M1126 3 of 5

Figure 2. Unit cell of **1** viewed along the *c*-axis showing the four molecules present.

While comparison of the internal angles at sulfur and at C=O show all six compounds to have rather similar values, the key difference observed between the molecular structure of **1** and the previous structures 6–10 is the degree of planarity in the dithiolanone ring. This is readily quantified by examining the torsion angle S-C-C-S for the six compounds (Table 2). While the carbonyl C(2) carbon is completely planar in all cases, it is only in the case of **1** where the whole dithiolanone ring is fused *cis* to the rigid bicyclo[2.2.1] skeleton that all five ring atoms are essentially coplanar, corresponding to a S-C-C-S torsion angle near to zero. In all the other cases this torsion angle is significantly greater, corresponding to a twisting of the ring, and it appears that even in the absence of substituent effects in **6** this twisted conformation is preferred.

Figure 3. A survey of crystallographically characterised 1,3-dithiolan-2-ones with Cambridge Structural Database (CSD) reference codes.

Table 2. Key angles in the structures of dithiolanones (٥,)	
---	----	---	--

Compound	C-S-C	S-C(O)-S	S-C-C-S	Reference
	Internal Angle	Internal Angle	Torsion Angle	
1	100.4(3), 99.7(3)	114.4(3)	1.9(5)	This work
6	96.61(5), 96.57(5)	113.41(6)	44.44(9)	[10]
7	95.7(2), 94.6(2)	114.8(2)	48.2(3)	[11]
8	94.7(2), 94.5(2)	113.6(2)	51.3(3)	[12]
9	99.67(8), 98.62(8)	114.1(1)	11.6(2)	[13]
10	97.9(2), 97.2(3)	113.7(3)	36.2(4)	[13]

Molbank **2020**, 2020, M1126 4 of 5

In summary, the x-ray crystal structure of the norbornane-fused 1,3-dithiolan-2-one **1** shows it to adopt an *exo* configuration with a planar heterocyclic ring, in contrast to the twisted shape adopted by the small number of other 1,3-dithiolan-2-ones for which crystal structures are known.

3. Experimental

3,5-Dithiatricyclo[5.2.1.0^{2.6}]decan-4-one (1): Crystal data for C₈H₁₀OS₂, M = 186.28 g mol⁻¹, colourless prism, crystal dimensions $0.25 \times 0.12 \times 0.05$ mm, orthorhombic, space group $Pna2_1$, a = 13.134(6), b = 6.336(3), c = 9.999(4) Å, V = 832.1(6) Å³, Z = 4, $D_{calc} = 1.487$ g cm⁻³, T = 93 K, R1 = 0.0430, Rw2 = 0.1051 for 1350 reflections with $I > 2\sigma(I)$, and 101 variables, R_{int} 0.0530, Goodness of fit on F^2 1.122. Data were collected using graphite monochromated Mo K α radiation $\lambda = 0.71075$ Å and have been deposited at the Cambridge Crystallographic Data Centre as CCDC 1989785. The data can be obtained free of charge from the Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/getstructures. The structure was solved by direct methods and refined by full-matrix least-squares against F^2 (SHELXL Version 2018/3 [14]). Hydrogen atoms were assigned riding isotropic displacement parameters and constrained to idealised geometries. The data did not allow determination of the polarity of the axis.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1

Author Contributions: N.S.K. prepared the compound; A.M.Z.S. collected the x-ray data and solved the structure; R.A.A. designed the experiments, analysed the data, and wrote the paper. All authors have read and agreed to the published version of the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

References

- 1. Russell, G.A.; Law, W.C.; Zaleta, M. Aliphatic semidiones. 44. Spin probes derived from dithiols. *J. Am. Chem. Soc.* **1985**, *107*, 4175–4182, doi:10.1021/ja00300a016.
- Ghosh, T. Reaction of trithiolanes with dihalocarbenes under phase-transfer catalysis. A convenient synthesis of trithiocarbonates and thionocarbonates. J. Org. Chem. 1990, 55, 1146–1147, doi:10.1021/jo00291a011.
- Bartlett, P.D.; Ghosh, T. Sulfuration of the norbornene double bond. J. Org. Chem. 1987, 52, 4937–4943, doi:10.1021/jo00231a020.
- 4. Gareau, Y.; Beauchemin, A. Free Radical Reaction of Diisopropyl Xanthogen Disulfide with Unsaturated Systems. *Heterocycles.* **1998**, *48*, 2003–2017, doi:10.3987/com-98-8230.
- Aitken, R.A.; Massil, T.; Raut, S.V. Cycloaddition of BunaP-CS2: direct one-pot conversion of strained double bonds to 2-alkylidene-1,3-dithiolanes. *J. Chem. Soc., Chem. Commun.* 1994, 2603–2604, doi:10.1039/c39940002603.
- Aitken, R.A.; Carcas, K.; Hill, L.; Massil, T.; Raut, S.V. Cycloaddition of Buⁿ₃P·CS₂: Direct one-pot conversion of strained double bonds to 2-alkylidene-1,3-dithiolanes. *Tetrahedron* 1997, 53, 2261–2270, doi:10.1016/s0040-4020(96)01128-3.
- Aitken, R.; Hill, L.; Massil, T.; Hursthouse, M.B.; Malik, K. Cycloaddition of BusP·CS2: Formation of extended bis- and tris-1,3-dithiolanes and dithiolane-containing polymers. *Tetrahedron* 1997, 53, 10441– 10450, doi:10.1016/s0040-4020(97)00655-8.
- 8. Aitken, R.A.; Hill, L.; Lightfoot, P. Direct one pot construction of norbornane-fused dihydrotetrathiafulvalenes. *Tetrahedron Lett.* **1997**, *38*, 7927–7930, doi:10.1016/s0040-4039(97)10049-1.
- Aitken, R.A.; Aitken, K.M.; Lambert, S.; Playfair, R.; Wilson, N.J. Synthesis of Norbornane-Fused 1,3-Dithiolanes and Evaluation of 1,3-Dithiolane-Containing Polymers as Absorbants for Mercury(II) Salts. Heterocycles. 2012, 84, 1113–1122, doi:10.3987/com-11-s(p)93.

Molbank **2020**, 2020, M1126 5 of 5

 Reinheimer, E.; Bacsa, J.; Dunbar, K.R. 1,3-Dithiolan-2-one. Acta Crystallogr. Sect. E. 2004, 60, o1206– o1207, doi:10.1107/s1600536804014382.

- 11. Dautel, O.J.; Fourmigué, M. Polyhalogenated BEDT-TTF through chlorination (SO₂Cl₂, Cl₂) and fluorination (®Selectfluor, XeF₂) of 5,6-dihydro[1,3]dithiolo[4,5-b][1,4]dithiin-2-one. *J. Chem. Soc. Perkin Trans.* 1 2001, 3399–3402, doi:10.1039/b106144p.
- 12. Dotsenko, I.A. Convenient synthesis of 1,3-dithiolane-2-thiones: cyclic trithiocarbonates as conformational locks. *Arkivoc* **2014**, 16–41, doi:10.3998/ark.5550190.p008.671.
- Masui, T.; Nomura, M.; Kobayashi, Y.; Terada, K.; Fujita-Takayama, C.; Sugiyama, T.; Kajitani, M. CpCo^I-mediated Diels-Alder Reaction Forming Dimeric 1,3-Dithiol-2-one Derivative with Spiro Structure and Successive Formation of Novel Cobalt Dithiolene Complex. *Chem. Lett.* 2008, 37, 1032–1033, doi:10.1246/cl.2008.1032.
- 14. Sheldrick, G.M. A short history of SHELX. *Acta Crystallogr. Sect. A* **2008**, *64*, 112–122, doi:10.1107/S0108767307043930.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).