Supplementary Materials

Improved Synthesis and Determinatin of Biologically Active Diastereomer of YK11

Yuichiro Kanno¹, Taichi Kusakabe¹, Nao Saito¹, Shoko Kikkawa¹, Keisuke Takahashi¹, Isao Azumaya¹, Kiyomitsu Nemoto^{1,*} and Keisuke Kato^{1,*}

^[1] Faculty of Pharmaceutical Sciences Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Table of Contents	page
Luciferase reporter assay	S2
Crystallographic parameters for structures of YK-11 (2a)	S 3
References	S 6
¹ H NMR and ¹³ C NMR spectra	S 7

Experimental section

Luciferase reporter assay

Cells of the human embryonic kidney cell line HEK293 were cultured in Dulbecco's modified Eagle's medium (DMEM; WAKO) containing 10% fetal bovine serum (FBS) and penicillinstreptomycin in a humidified atmosphere containing 5 % CO₂ at 37 °C. The cells maintained in phenol red-free DMEM containing 5% charcoal-stripped FBS (csFBS) were seeded in 48-well plates and transfected with AR expression plasmids, the ARE-luciferase reporter plasmids¹, and a Renilla pGL4.74 (hRluc/TK; Promega) as an internal standard using the reverse-transfection method with the PEI Max Reagent (Polysciences Inc.). After incubation overnight, the cells were treated with one of the AR ligands for 24 h prior to measuring the luciferase activity using the Dual-Luciferase Reporter Assay System (Promega).

Crystallographic parameters for structures of YK-11 (2a).

X-ray data were collected on a Rigaku XtaLAB P200 diffractometer with multi-layer mirror monochromated Cu $K\alpha$ ($\lambda = 1.54187$ Å) and a hybrid photon counting detector (PILATUS 200K). The crystal structure was solved by direct methods (SHELXT Version 2014/5)² and refined by full-matrix least-squares SHELXL-2014/7.³ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were generated theoretically added. The absolute configuration of the molecule was reasonable in terms of the Flack parameter⁴ **YK-11** (**2a**) contains two crystallographically independent molecules in the asymmetric unit. Highly disordered solvent, which located in channels along [010], was unable to be modeled. As the identification of disordered solvent molecules riding on the center of symmetry was failed in the refinement of void space, PLATON/SQUEEZE program⁵ was applied. PLATON/SQUEEZE shows the total potential solvent accessible void volume is 270 Å³ and residual electrons count 76 in the unit cell. CCDC-1974030 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Compound	YK11 (2a)
Empirical formula	$C_{25}H_{34}O_{6}$
Formula weight	430.54
Crystal system	monoclinic
Space group	$P2_1$
<i>a</i> / Å	15.7937(3)
b / Å	7.49440(10)
c / Å	20.8812(2)
α / deg	90.0000
β / deg	97.4360(13)
γ/\deg	90.0000
V / Å ³	2450.80(6)
Ζ	4
Temperature / K	93
Goodness-of-fit on $F^{2 [a]}$	1.056
$R_1 [I > 2\sigma(I)]$ on $F^{[b]}$	0.0408
wR_2 (all data) on $F^{2 [c]}$	0.1136
Reflection collected (all data)	29206
Independent reflections $[I > 2\sigma(I)]$	8505
R _{int}	0.0310
Flack parameter	0.03(6)
T_{\max}	0.849
T_{\min}	0.954
$2\theta_{\max}$	68.249
$D_{ m calcd}$./ gcm ⁻³	1.167
μ/mm^{-1}	0.670
CCDC code	1974030

Table S1 Crystallographic data and refinement parameters for YK-11 (2a)

^[a] Goodness of fit = $[\Sigma w (F_o^2 - F_c^2)^2 / (N_o - N_v)]^{1/2}$ (N_o = number of observations, N_v = number of variables). ^[b] $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|^{[c]} w R_2 = [\Sigma (w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2)^{1/2}$

Figure S1 X-ray structure of **YK-11** (**2a**). **YK-11** (**2a**) contains two crystallographically independent molecules (a and b) in the asymmetric unit. Colors of atoms: C, gray spheres; O, red spheres; H, light gray spheres.

References

(1) Y. Kanno, R. Hikosaka, S-Y. Zhang, Y. Inoue, T. Nakahama, K. Kato, A. Yamaguchi, N.

Tominaga, S. Kohra, K. Arizono, Y. Inoue, Biol. Pharm. Bull. 2011, 34, 318-323.

- (2) G. M. Sheldrick, Acta Crystallogr. 2014, A70, C1437.
- (3) G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8.
- (4) a) H. D. Flack, G. Bernardinelli, *Acta Crystallogr.* **1999**, *A55*, 908-915. b) H.D. Flack, G. Bernardinelli, *J. Appl. Crystallogr.* **2000**, *33*, 1143-1148.
- (5) A. L. Spek, Acta Crystallogr. 2015, C71, 9-18.

L3

