Improved Synthesis and Determinatin of Biologically Active Diastereomer of YK11

Yuichiro Kanno ${ }^{1}$, Taichi Kusakabe ${ }^{1}$, Nao Saito ${ }^{1}$, Shoko Kikkawa ${ }^{1}$, Keisuke Takahashi ${ }^{1}$, Isao Azumaya ${ }^{1}$, Kiyomitsu Nemoto ${ }^{1, *}$ and Keisuke Kato ${ }^{1, *}$
${ }^{[1]}$ Faculty of Pharmaceutical Sciences Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

Table of Contents page
Luciferase reporter assay S2
Crystallographic parameters for structures of YK-11 (2a) S3
References S6
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra S7

Experimental section

Luciferase reporter assay

Cells of the human embryonic kidney cell line HEK293 were cultured in Dulbecco's modified Eagle's medium (DMEM; WAKO) containing 10\% fetal bovine serum (FBS) and penicillinstreptomycin in a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$ at $37^{\circ} \mathrm{C}$. The cells maintained in phenol red-free DMEM containing 5\% charcoal-stripped FBS (csFBS) were seeded in 48-well plates and transfected with AR expression plasmids, the ARE-luciferase reporter plasmids ${ }^{1}$, and a Renilla pGL4.74 (hRluc/TK; Promega) as an internal standard using the reverse-transfection method with the PEI Max Reagent (Polysciences Inc.). After incubation overnight, the cells were treated with one of the AR ligands for 24 h prior to measuring the luciferase activity using the Dual-Luciferase Reporter Assay System (Promega).

Crystallographic parameters for structures of YK-11 (2a).

X-ray data were collected on a Rigaku XtaLAB P200 diffractometer with multi-layer mirror monochromated $\mathrm{Cu} K \alpha(\lambda=1.54187 \AA$) and a hybrid photon counting detector (PILATUS 200K). The crystal structure was solved by direct methods (SHELXT Version 2014/5) ${ }^{2}$ and refined by fullmatrix least-squares SHELXL-2014/7. ${ }^{3}$ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were generated theoretically added. The absolute configuration of the molecule was reasonable in terms of the Flack parameter ${ }^{4}$ YK-11 (2a) contains two crystallographically independent molecules in the asymmetric unit. Highly disordered solvent, which located in channels along [010], was unable to be modeled. As the identification of disordered solvent molecules riding on the center of symmetry was failed in the refinement of void space, PLATON/SQUEEZE program ${ }^{5}$ was applied. PLATON/SQUEEZE shows the total potential solvent accessible void volume is $270 \AA^{3}$ and residual electrons count 76 in the unit cell. CCDC-1974030 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1 Crystallographic data and refinement parameters for YK-11 (2a)

Compound	YK11 (2a)
Empirical formula	$\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{O}_{6}$
Formula weight	430.54
Crystal system	monoclinic
Space group	$P 2_{1}$
a / \AA	$15.7937(3)$
b / \AA	$7.49440(10)$
c / \AA	$20.8812(2)$
$\alpha /$ deg	90.0000
$\beta /$ deg	$97.4360(13)$
$\gamma /$ deg	90.0000
V / \AA^{3}	$2450.80(6)$
Z	4
Temperature $/ K$	93
Goodness-of-fit on F^{2} [a]	1.056
$R_{1}[I>2 \sigma(I)]$ on F [b]	0.0408
$w R_{2}$ (all data) on F^{2} [c]	0.1136
Reflection collected (all data)	29206
Independent reflections $[I>2 \sigma(I)]$	8505
$R_{\text {int }}$	0.0310
Flack parameter	$0.03(6)$
$T_{\text {max }}$	0.849
$T_{\text {min }}$	0.954
$2 \theta_{\text {max }}$	68.249
$D_{\text {calcd }} /$ gcm ${ }^{-3}$	1.167
$\mu /$ mm $^{-1}$	0.670
CCDC code	1974030

${ }^{[\text {a] }}$ Goodness of fit $=\left[\Sigma w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2} /\left(N_{\mathrm{o}}-N_{\mathrm{v}}\right)\right]^{1 / 2}\left(N_{\mathrm{o}}=\right.$ number of observations, $N_{\mathrm{v}}=$ number of variables). ${ }^{[b]} R_{1}=\Sigma\left\|F_{0}\left|-\left|F_{\mathrm{c}} \| / \Sigma\right| F_{\mathrm{o}}\right|^{[\mathrm{c}]} w R_{2}=\left[\Sigma\left(w\left(F_{0}^{2}-F_{\mathrm{c}}^{2}\right)^{2} / \Sigma w\left(F_{0}^{2}\right)^{2}\right)^{1 / 2}\right.\right.$
(a)

(b)

Figure S1 X-ray structure of YK-11 (2a). YK-11 (2a) contains two crystallographically independent molecules (a and b) in the asymmetric unit. Colors of atoms: C, gray spheres; O, red spheres; H, light gray spheres.

References

(1) Y. Kanno, R. Hikosaka, S-Y. Zhang, Y. Inoue, T. Nakahama, K. Kato, A. Yamaguchi, N.

Tominaga, S. Kohra, K. Arizono, Y. Inoue, Biol. Pharm. Bull. 2011, 34, 318-323.
(2) G. M. Sheldrick, Acta Crystallogr. 2014, A70, C1437.
(3) G. M. Sheldrick, Acta Crystallogr. 2015, C71, 3-8.
(4) a) H. D. Flack, G. Bernardinelli, Acta Crystallogr. 1999, A55, 908-915. b) H.D. Flack, G. Bernardinelli, J. Appl. Crystallogr. 2000, 33, 1143-1148.
(5) A. L. Spek, Acta Crystallogr. 2015, C71, 9-18.

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra

L3

YK11 (2a)

