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Abstract: 2,3,5-Tri-O-benzyl- and 2,3,5-tri-O-methyl-d-ribono-γ-lactone were converted with
(methoxyethoxymethoxy)methyl and benzyloxy tributylstannane into the corresponding
protected d-psicoses as mixtures of anomers in 31%–72% yield. Treatment of
2,3,5-tri-O-methyl-l-ribono-γ-lactone with benzyloxy tributylstannane afforded the corresponding
l-psicose derivative as an anomeric mixture in 72% yield. Both methylated psicoses were further
converted into 1,2-O-isopropylidene-3,4,6-tri-O-methyl-d- and l-psicofuranosides, the respective α-
and β-anomers of which could be separated and characterized.
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1. Introduction

Only a few ketoses occur in nature in significant amounts. d-Fructose is the only ketose that
occurs in large quantities in nature and can be isolated from plant material [1]. Other ketoses like
psicose (Figure 1) are rare carbohydrates which cannot be isolated in considerable amounts from
natural sources. They can be synthesized either by isomerization of the corresponding aldoses in
low yields or by multi-step syntheses involving different protection and deprotection steps or by
enzymatic methods [2–8] resulting in a high price for these ketoses. As part of an ongoing research
project about the synthesis of carbohydrate derived catalysts for asymmetric syntheses [9–12] we
required considerable amounts of d- and l-psicofuranose derivatives 3. Due to the high price of both
enantiomers of psicose [13] we developed a specific synthetic route for the preparation of d- and
l-psicose derivatives 3, starting from d- and l-ribose (2). We chose ribose as the starting material because
both enantiomers of this sugar are commercially available at decent costs [13] and the stereocenters
possess the same configuration as psicose.
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1. Introduction 

Only a few ketoses occur in nature in significant amounts. D-Fructose is the only ketose that 
occurs in large quantities in nature and can be isolated from plant material [1]. Other ketoses like 
psicose (Figure 1) are rare carbohydrates which cannot be isolated in considerable amounts from 
natural sources. They can be synthesized either by isomerization of the corresponding aldoses in low 
yields or by multi-step syntheses involving different protection and deprotection steps or by 
enzymatic methods [2–8] resulting in a high price for these ketoses. As part of an ongoing research 
project about the synthesis of carbohydrate derived catalysts for asymmetric syntheses [9–12] we 
required considerable amounts of D- and L-psicofuranose derivatives 3. Due to the high price of both 
enantiomers of psicose [13] we developed a specific synthetic route for the preparation of D- and L-
psicose derivatives 3, starting from D- and L-ribose (2). We chose ribose as the starting material 
because both enantiomers of this sugar are commercially available at decent costs [13] and the 
stereocenters possess the same configuration as psicose.  
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Figure 1. Fischer projection of D- and L-psicose (1), D- and L-ribose (2) and D- and L-psicose derivatives 
3. PG—protective group. 
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Figure 1. Fischer projection of d- and l-psicose (1), d- and l-ribose (2) and d- and l-psicose derivatives
3. PG—protective group.
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2. Results and Discussion

We first established a synthetic route starting with the cheap d-enantiomer of ribose and applied
our findings later to the more expensive l-enantiomer. Since ribose is a pentose and psicose a hexose,
the carbohydrate chain of the ribose had to be elongated by one carbon atom. Our strategy for
accomplishing this was to first convert ribose to the corresponding lactone 6 and then elongate its
carbon chain at C-1 via addition of the organometallic reagent 5 (Scheme 1). The latter could be
obtained from tributylstannyl methanol 4 by transmetallation with butyl lithium and had already been
used for the elongation of other carbohydrate derivatives [14–17].
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Scheme 1. Planned elongation of the carbohydrate chain in order to derive hexose from a pentose.

At first we attempted to react known tri-O-benzyl ribono lactone (8) [18] with unprotected 4
(4a, R = H) [19] since this approach would have led directly to the target molecules without the
need of any additional protecting group manipulations. Unfortunately, treatment of d-8 with 4a only
resulted in decomposition of the starting materials. Next, we decided to use a suitably protected
stannyl reagent 4 since such reagents had previously been used successfully for the elongation of other
aldose derivatives. As a protecting group we chose the methoxyethoxmethyl group (MEM) due to its
orthogonality to benzyl protecting groups and its facile removal [20]. In fact, treatment of lactone d-8
with MEM-protected 4b afforded the corresponding elongated sugar d-9, however in rather poor yield
(Scheme 2).
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Scheme 2. Hydroxy methylation of d-8 with methoxyethoxmethyl group (MEM)-protected organotin
compound 4b.

It is known that stannyl reagents of the type 4 may rearrange upon transmetallation, with butyl
lithium. Most likely this was the reason for the observed low yield. Such rearrangements may depend
on the nature of the protecting group in 4. [19] Therefore, we decided to use a supposedly more stable
benzyl group instead of the MEM protective group for reagent 4. In order to keep orthogonality
between the protective groups at the ribono lactone and the stannyl reagent we also changed the
substituents at the lactone accordingly. Here, we chose methyl groups as they can be introduced easily
and are stable to broad range of reaction conditions. Thus known ribose derivative d-10 [21] was
first oxidized to d-11 in excellent yield using iodine as the oxidant (Scheme 3). Addition of d-11 to a
solution of the benzylated organotin reagent 4c and n-BuLi finally provided d-12 in good yield as an
inseparable mixture of anomers.
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from HPLC grade acetone by the addition of molecular sieves (4 Å). Tert-butanol and ethanol were 
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Next, the benzyl group at position 1 of psicose derivative d-12 was reductively removed in very
high yield using palladium on charcoal as the catalyst. Deprotected compound d-13 again emerges
as a mixture of inseparable anomers. In order to obtain an anomerically pure substance we further
modified d-13 by converting it into the corresponding isopropylidene derivatives d-14 and d-15 both
of which could be isolated in pure form. The configuration at the anomeric center of d-14 and d-15
was verified by NMR spectroscopy. The NOESY spectrum of d-14 shows a NOE between H-1 and the
methyl groups at position 3 and 4 whereas the d-15 has a NOE between H-1 and H-3.

With a working synthetic sequence for the d-enantiomers in hand, we applied it to the l-enantiomer
l-10 as well (Scheme 4). l-10 was prepared as described in the literature for the preparation of d-10. [21]
As was expected, the synthetic route worked smoothly with yields nearly identical yields to those
obtained for the d-enantiomers in all steps of the reaction sequence.
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3. Materials and Methods

3.1. General Remarks

Reactions in dry solvents were carried out under an atmosphere of nitrogen. Dry THF was
distilled from sodium/benzophenone, dry CH2Cl2 was distilled from P4O10, dry acetone was prepared
from HPLC grade acetone by the addition of molecular sieves (4 Å). Tert-butanol and ethanol were
HPLC grade and used without further purification. Solvents used for column chromatography were
techniqual grade and distilled prior to their use. Petroleum ether (PE) refers to the fraction boiling at
60–90 ◦C. Silica gel “60 M” from Machery-Nagel was used for column chromatography. For reaction
monitoring, TLC plates “Polygram Sil G/U254” from Machery-Nagel were used. Optical rotations were
measured with a Perkin Elmer “Polarimeter 341”. NMR spectra were measured at a Bruker “Avance
III HD 400” or a Bruker “Avance HD 300 NanoBay” and are calibrated to the solvent signal. For peak
assignment additional spectra (DEPT, COSY, HMBC, HSQC) were recorded. The atoms are numbered
in accordance with the carbohydrate nomenclature. High resolution mass spectra were measured at a
Bruker “maXis 4G”. Elemental analysis was performed using a HEKAtech “Euro 3000 CHN”.

3.2. Synthesis of Compounds

[(Methoxy-ethoxy-methoxy)-methyl]tributylstannane (4b): To a solution of
tributylstannyl-methanol (4a) (911 mg, 2.83 mmol) [22] in dry CH2Cl2 (10 mL) DIPEA (0.72 mL,
4.25 mmol) and MEM-Cl (0.49 mL, 4.25 mmol) were added and the reaction mixture was stirred at room
temperature for 16 h. Then, again MEM-Cl (0.16 mL, 1.41 mmol) was added and the reaction mixture
was stirred for additional 5 h. The reaction was quenched by the addition of MeOH and afterwards
water was added. The aqueous phase was extracted with CH2Cl2 (3 × 10 mL). The combined organic
layers were dried (Na2SO4) and the solvent was evaporated in vacuo. Column chromatography
(PE + 2% Et3N→ PE/EtOAc, 20/1 + 2% Et3N) provided 4b (985 mg, 85%) as colorless oil. Rf = 0.50
(PE/EtOAc, 10/1 + 2% Et3N); 1H-NMR (400 MHz, CDCl3) δ = 4.61 (s, 2H, SnCH2O), 3.76 (s, 2H,
OCH2O), 3.62–3.68 (m, 2H, OCH2CH2O), 3.53–3.61 (m, 2H, OCH2CH2O), 3.33–3.45 (m, 3H, OCH3),
1.46–1.56 (m, 6H, C4H9), 1.26–1.35 (m, 6H, C4H9), 0.78–0.99 (m, 15H, C4H9); 13C-NMR (101 MHz,
CDCl3) δ = 98.6 (SnCH2O), 71.8 (OCH2CH2O), 66.5 (OCH2CH2O), 59.0 (OCH3), 57.7 (OCH2O),
29.1 (CH2C3H7), 27.3 (CH2C3H7), 13.7 (CH3C3H6), 8.8 (CH2C3H7); HRMS (ESI-TOF) m/z [M + Na]+:
calcd for C17H38O3SnNa: 433.17351, found: 433.17360; Anal calcd for C17H38O3Sn: C 49.9, H 9.36,
found: C 49.76, H 9.38.

3,4,6-Tri-O-benzyl-1-O-(methoxyethoxymethyl)-d-psicose (d-9): To a solution of 4b (239 mg,
0.58 mmol) in dry THF (2 mL) n-BuLi (348 µl, 0.56 mmol; 1.6 m in hexanes) and lactone d-8 (116 mg,
0.28 mmol; dissolved in 2 mL dry THF) were subsequently added at −80 ◦C. The reaction mixture
was stirred at −80 ◦C for 40 min and afterwards the reaction was quenched by the addition of water
(5 mL). The mixture was extracted with EtOAc (3 × 20 mL) and the combined organic layers were
dried (Na2SO4). After evaporation of the solvent, the residue was purified by column chromatography
(PE/EtOAc, 2/1 → 1/1), which provided d-9 (47 mg, 31%) as a colorless oil. [α]20

D = −15.6◦ (c = 1.0,
CHCl3); Rf = 0.25 (PE/EtOAc, 2/1); 1H-NMR (400 MHz, CDCl3) δ = 7.11–7.36 (m, 15H, H-Ar), 5.60–5.77
(m, 1H, OH), 4.82–4.86 (m, 1H, CH2Ph), 4.66–4.69 (m, 1H, CH2Ph), 4.58–4.62 (m, 1H, H-1a), 4.54–4.58
(m, 1H, H-1b), 4.43–4.52 (m, 3H, CH2Ph), 4.35–4.42 (m, 1H, CH2Ph), 4.21–4.24 (m, 1H, H-5), 3.95–4.04
(m, 1H, H-6a), 3.64–3.75 (m, 2H, H-3, MEM), 3.44–3.63 (m, 4H, H-6b, MEM), 3.35–3.42 (m, 3H, H-4,
MEM), 3.26 (s, 3H, CH3); 13C-NMR (101 MHz, CDCl3) δ = 137.8, 137.6, 137.5, 128.5, 128.4, 128.4, 128.1,
127.9, 127.9, 127.8, 127.4 (C-Ar), 97.5 (C-2), 95.9 (C-1), 75.4 (C-5), 75.1 (CH2Ph), 74.7 (C-3 or C-4), 73.3
(C-3 or C-4), 71.6 (MEM), 71.4, 71.2 (CH2Ph), 69.1, 66.9 (MEM), 58.9 (CH3), 57.5 (C-6); HRMS (ESI-TOF)
m/z [M + Na]+: calcd for C31H38O8Na: 561.24589, found: 561.24618; Anal calcd for C31H38O8: C 69.13,
H 7.11, found: C 68.82, H 7.19.

2,3,5-Tri-O-methyl-d-ribono-1,4-lactone (d-11): A mixture of d-10 (3.83 g, 19.9 mmol), I2 (10.1 g,
39.8 mmol) and K2CO3 (5.51 g, 39.8 mmol) in tert-butanol (100 mL) was heated to 80 ◦C for 90 min.
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The reaction mixture was cooled to room temperature and water (10 mL) and solid Na2S2O4 were
added to quench the excess of iodine. The mixture was filtered and the solvent was evaporated in
vacuo. Column chromatography (PE/EtOAc, 2/1→ 1/1) provided d-11 (3.50 g, 92%) as light yellow oil.
[α]20

D = +52.3◦ (c = 1.0, CHCl3); Rf = 0.59 (EtOAc); 1H-NMR (300 MHz, CDCl3) δ = 4.47–4.56 (m, 1H,
H-4), 4.25 (d, J = 5.6 Hz, 1H, H-2), 4.05 (dd, J = 5.6, 1.7 Hz, 1H, H-3), 3.64 (s, 3H, CH3), 3.62 (t, J = 2.7 Hz,
2H, H-5), 3.48 (s, 3H, CH3), 3.31–3.39 (m, 3H, CH3); 13C-NMR (75 MHz, CDCl3) δ = 173.3 (C-1), 80.8
(C-4), 77.5 (C-3), 76.4 (C-2), 71.6 (C-5), 59.5, 59.2, 58.0 (CH3); HRMS (ESI-TOF) m/z [M + Na]+: calcd for
C8H14O5Na: 213.07334, found: 213.07374; Anal calcd for C8H14O5: C 50.52, H 7.42, found: C 50.12,
H 7.32.

2,3,5-Tri-O-methyl-l-ribono-1,4-lactone (l-11): Prepared with the same protocol described for
d-11, from l-10 (3.50 g, 18.2 mmol), I2 (9.24 g, 36.4 mmol) and K2CO3 (5.03 g, 36.4 mmol). Colorless
oil, (3.12 g, 90%) yield after column chromatography. [α]20

D = −51.1◦ (c = 1.0, CHCl3); Rf and NMR
data was identical to d-11; HRMS (ESI-TOF) m/z [M + Na]+: calcd for C8H14O5Na: 213.07334, found:
213.07350; Anal calcd for C8H14O5: C 50.52, H 7.42, found: C 50.88, H 7.71.

3,4,6-Tri-O-methyl-1-O-benzyl-d-psicose (d-12): To a solution of 4c (6.36 g, 15.5 mmol) [23] in dry
THF (25 mL) n-BuLi (11.6 mL, 18.5 mmol; 1.6m in hexanes) and lactone d-11 (1.96, 10.3 mmol; dissolved
in 25 mL dry THF) was subsequently added at −80 ◦C. The reaction mixture was stirred at −80 ◦C for
90 min and afterwards allowed to reach room temperature and quenched by the addition of AcOH
(1 mL), filtered and the solvent was evaporated in vacuo. Column chromatography (PE/EtOAc, 1/1)
provided d-12 (2.32 g, 72%) as colorless oil. The product was isolated as mixture of anomers in ratio 4:1.
[α]20

D = −6.7◦ (c = 1.0, CHCl3); Rf = 0.30 (PE/EtOAc, 1/1); 1H-NMR (300 MHz, CDCl3) δ = 7.23–7.41
(m 5H, H-Ar, both anomers), 4.48–4.73 (m, 2H, CH2Ph, both anomers), 4.20–4.29 (m, 0.8H, H-5, major
anomer), 4.07–4.17 (m, 0.2H, H-4, minor anomer), 4.01–4.05 (m, 0.2H, H-5, minor anomer), 3.89 (d,
J = 5.1 Hz, 0.8H, H-3, major anomer), 3.78–3.85 (m, 0.8H, H-4, major anomer), 3.76 (d, J = 3.2 Hz, 0.2H,
H-3, minor anomer), 3.29–3.68 (m, 13H, H-1a, H-1b, H-6a, H-6b, 3 × CH3); 13C-NMR (75 MHz, CDCl3)
δ = 138.2, 128.3, 128.2, 127.9, 127.7, 127.6, 127.5 (C-Ar), 104.8 (C-2, minor anomer), 102.8 (C-2, major
anomer), 82.9 (C-3, minor anomer), 80.7 (C-5, minor anomer), 79.9 (C-4, minor anomer), 79.8 (C-4,
major anomer), 79.1 (C-3, major anomer), 79.0 (C-5, major anomer), 73.7 (CH2Ph, minor anomer),
73.5 (CH2Ph, major anomer), 73.0 (C-6, minor anomer), 72.5 (C-6, major anomer), 71.1 (C-1, major
anomer), 70.8 (C-1, minor anomer), 60.0 (CH3, minor anomer), 59.3 (CH3, major anomer), 59.2 (CH3,
minor anomer), 59.1 (CH3, major anomer), 58.4 (CH3, minor anomer), 58.4 (CH3, major anomer);
HRMS (ESI-TOF) m/z [M + Na]+: calcd for C16H24O6Na: 335.14651, found: 335.14699; Anal calcd for
C16H24O6: C 61.52, H 7.74, found: C 61.05, H 7.84.

3,4,6-Tri-O-methyl-1-O-benzyl-l-psicose (l-12): Prepared with the same protocol as described for
d-12, from 4c (8.76 g, 21.3 mmol), l-11 (2.70, 14.2 mmol) and n-BuLi (16.0 mL, 25.6 mmol; 1.6 m in
hexanes). Colorless oil, (3.06 g, 69%) yield after column chromatography. [α]20

D = +7.3◦ (c = 1.0, CHCl3);
Rf and NMR data was identical to d-11; HRMS (ESI-TOF) m/z [M + Na]+: calcd for C16H24O6Na:
335.14651, found: 335.14642; Anal calcd for C16H24O6: C 61.52, H 7.74, found: C 61.53, H 7.87.

3,4,6-Tri-O-methyl-d-psicose (d-13): A mixture of d-12 (2.64 g, 8.45 mmol) and Pd (200 mg,
0.19 mmol; 10% on activated carbon) in degassed EtOH (100 mL) was stirred under an atmosphere of
hydrogen for 3 h. The reaction mixture was filtered through a pad of celite. After evaporation of the
solvent in vacuo the residue was purified by column chromatography (EtOAc→ EtOAc/i-PrOH 1/1)
which provided d-13 (1.72 g, 92%) as a colorless oil. The product was isolated as mixture of anomers in
ratio 4:1. [α]20

D = +1.6◦ (c = 1.0, CHCl3); Rf = 0.60 (EtOAc/i-PrOH, 1/1); 1H-NMR (400 MHz, CDCl3)
δ = 4.32 (s, 0.8H, OH, major anomer), 4.19–4.22 (m, 0.8H, H-5, major anomer), 4.12–4.18 (m, 0.2H,
H-5, minor anomer), 4.02–4.06 (m, 0.2H, H-4, minor anomer), 3.91–3.96 (m, 0.8H, H-4, major anomer),
3.87–3.90 (m, 0.8H, H-3, major anomer), 3.78–3.81 (m, 0.2H, H-3, minor anomer), 3.74 (s, 0.2H, OH,
minor anomer), 3.32–3.68 (m, 13H, H-1a, H-1b, H-6a, H-6b, 3 × CH3), 2.50 (bs, 1H, OH); 13C-NMR
(101 MHz, CDCl3) δ = 105.2 (C-2, minor anomer), 103.4 (C-2, major anomer), 83.9 (C-3, minor anomer),
80.7 (C-4, minor anomer), 80.2 (C-5, minor anomer), 80.2 (C-4, major anomer), 79.3 (C-3, major anomer),
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79.2 (C-5, major anomer), 72.7 (C-6, minor anomer), 72.1 (C-6, major anomer), 64.8 (C-1, major anomer),
64.2 (C-1, minor anomer), 60.0 (CH3, minor anomer), 59.6 (CH3, major anomer), 59.3 (CH3, minor
anomer), 59.3 (CH3, major anomer), 58.6 (CH3, major anomer), 58.5 (CH3, minor anomer); HRMS
(ESI-TOF) m/z [M + Na]+: calcd for C9H18O6Na: 245.09956, found: 245.09987; Anal calcd for C9H18O6:

C 48.64, H 8.16, found: C 48.39, H 7.84.
3,4,6-Tri-O-methyl-l-psicose (l-13): Prepared with the same protocol as described for d-13, from

l-12 (1.47 g, 4.70 mmol) and Pd (150 mg, 0.14 mmol; 10% on activated carbon). Colorless oil, (971 mg,
93%) yield after column chromatography. [α]20

D = −0.7◦ (c = 1.0, CHCl3); Rf and NMR data was identical
to d-11; HRMS (ESI-TOF) m/z [M + Na]+: calcd for C9H18O6Na: 245.09956, found: 245.09987; Anal
calcd for C9H18O6: C 48.64, H 8.16, found: C 48.83, H 8.24.

1,2-O-Isopropylidene-3,4,6-tri-O-methyl-α-d-psicofuranosid (d-14) and 1,2-O-isopropylidene-
3,4,6-tri-O-methyl-β-d-psicofuranosid (d-15): To a solution of d-13 (26 mg, 0.117 mmol) in dry acetone
(1 mL) para-toluene sulfonic acid (2.3 mg, 0.012 mmol; monohydrate) was added and the resulting
mixture was stirred at room temperature for 20 h. The reaction mixture was alkalized by the addition
of NH3 (0.1 mL; 25% in H2O) and the solvent was evaporated in vacuo. Column chromatography
(PE/EtOAc, 1/1→ 1/3) afforded both anomers in two different fractions. Eluted first: d-14 (22 mg, 70%)
as a colorless oil. [α]20

D = −35.3◦ (c = 1.0, CHCl3); Rf = 0.56 (PE/EtOAc, 1/1); 1H-NMR (400 MHz, CDCl3)
δ = 4.26 (d, J = 9.7 Hz, 1H, H-1a), 4.05–4.09 (m, 1H, H-5), 3.97 (d, J = 9.7 Hz, 1H, H-1b), 3.78–3.83
(m, 1H, H-4), 3.76 (d, J = 4.5 Hz, 1H, H-3), 3.56 (s, 3H, CH3O), 3.50 (d, J = 5.1 Hz, 2H, H-6a, H-6b),
3.44 (s, 3H, CH3O), 3.40 (s, 3H, CH3O), 1.48 (s, 3H, CH3C), 1.40 (s, 3H CH3C); 13C-NMR (101 MHz,
CDCl3) δ = 111.8 (C(CH3)2), 110.5 (C-2), 82.3 (C-3), 81.1 (C-4), 79.3 (C-5), 74.0 (C-6), 69.7 (C-1), 59.8, 59.4,
58.4 (CH3O), 26.3, 26.1 (C(CH3)2); HRMS (ESI-TOF) m/z [M + Na]+: calcd for C12H22O6Na: 285.13086,
found: 285.13089. Eluted second: d-15 (4.8 mg, 16%) as a colorless oil. [α]20

D = +10.5◦ (c = 1.0, CHCl3);
Rf = 0.20 (PE/EtOAc, 1/1); 1H-NMR (400 MHz, CDCl3) δ = 4.23–4.26 (m, 1H, H-5), 4.08 (d, J = 9.1 Hz,
1H, H-1a), 4.03 (d, J = 9.1 Hz, 1H, H-1b), 3.77 (dd, J = 6.4, 2.9 Hz, 1H, H-4), 3.59 (d, J = 6.4 Hz, 1H,
H-3), 3.52 (s, 3H, CH3O), 3.48 (d, J = 3.9 Hz, 2H, H-6a, H-6b), 3.44 (s, 3H, CH3O), 3.38 (s, 3H, CH3O),
1.53 (s, 3H, CH3C), 1.47 (s, 3H, CH3C); 13C-NMR (101 MHz, CDCl3) δ = 111.8 (C(CH3)2), 109.2 (C-2),
81.0 (C-5), 80.2 (C-3), 78.2 (C-4), 73.2 (C-6), 71.8 (C-1), 59.5, 58.7, 58.5 (CH3O), 26.6, 26.3 (C(CH3)2);
HRMS (ESI-TOF) m/z [M + Na]+: calcd for C12H22O6Na: 285.13086, found: 285.13106; Anal calcd for
C12H22O6: C 54.95, H 8.45, found: C 54.47, H 8.28.

1,2-O-Isopropylidene-3,4,6-tri-O-methyl-α-l-psicofuranosid (l-14) and 1,2-O-isopropylidene-3,4,6-
tri-O-methyl-β-l-psicofuranosid (l-15): Prepared with the same protocol as described ford-14 andd-15,
from l-13 (148 mg, 0.666 mmol) and para-toluene sulfonic acid (12.6 mg, 0.066 mmol; monohydrate).
Eluted first: l-14 (124 mg, 71%) as a colorless oil. [α]20

D = +37.6◦ (c = 1.0, CHCl3); Rf and NMR data was
identical to d-14; HRMS (ESI-TOF) m/z [M + Na]+: calcd for C12H22O6Na: 285.13086, found: 285.13097;
Anal calcd for C12H22O6: C 54.95, H 8.45, found: C 55.62, H 8:72. Eluted second: l-15 (30 mg, 17%) as
a colorless oil. [α]20

D = −9.2◦ (c = 1.0, CHCl3); Rf and NMR data was identical to d-15; HRMS (ESI-TOF)
m/z [M + Na]+: calcd for C12H22O6Na: 285.13086, found: 285.13110; Anal calcd for C12H22O6: 54.95,
H 8.45, found: C 55.18, H 8.45.

4. Conclusions

In summary, we describe a method to prepare derivatives of both enantiomers of rare ketoses
(i.e., psicose) from inexpensively ribose. The ketoses have the protecting groups necessary for the
synthesis of ligands for asymmetric catalysis. With other inexpensive commercially available pentoses
like for instance l-arabinose (100 g, 144 €) or d-xylose (1 kg, 57 €) derivatives of other rare ketoses like
l-fructose (50 mg, 126 €), or d-sorbose (100 mg, 224 €) are accessible [24]. By using the benzylated
lactone 8 in the sequence shown in Schemes 3 and 4, the completely deprotected psicose should be
obtained after the reduction under an atmosphere of hydrogen. Since the methyl groups are hard
to remove, other protective groups like MEM or TIPS at the carbohydrate may be used if an easily
removable to benzyl orthogonal protective group is needed.
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