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Abstract: The title compound, 2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))
bis(quinoline-3-carboxylic acid) was synthesized from isoxazolo[3,4-b]quinolin-3(1H)-one and
dimethyl acetylenedicarboxylate (DMAD) via a double aza-Michael addition followed by [1,3]-H
shifts. The product was characterized by infrared and nuclear magnetic resonance spectroscopy,
as well as elemental analysis and high-resolution mass spectrometry (HRMS). The proposed reaction
mechanism was rationalized by density functional theory (DFT) calculations.

Keywords: [1,3]-H shift; aza-Michael addition; DFT calculations; dimethyl acetylenedicarboxylate;
isoxazolo[3,4-b]quinolin-3(1H)-one

1. Introduction

Isoxazol-3(2H)-one and isoxazol-5(2H)-one derivatives (Figure 1) represent an extensive class
of heterocyclic ring systems found in natural products and building blocks employed in medicinal
chemistry. They may be treated as useful tools in organic synthesis since they are small and easy
to functionalize molecules that can be utilized to design novel bioactive compounds. It has been
proven that these synthetic products exhibit antibacterial [1–8], antifungal [7–16], antitubercular [3],
anticancer [3,6,17,18], antileucemic [5], antinflammatory [19–21], antiviral [22], anticonvulsant [1],
antioxidant [2,7], and antiandrogenic [23,24] properties. They may act as inhibitors of p38 MAP
kinases [25], protein kinase C [26], and protein-tyrosine phosphatase 1B, which consequently
cause antiobesity effect [27,28]. They also find applications as GABAA receptor ligands [29] and
glutamate receptor agonists [30–32], therefore they can affect learning and memory processes. Despite
the molecular mechanism of antifungal action of isoxazol-5(2H)-ones such as TAN-950A [16] and
drazoxolon [8,15] has not been established, it should be underlined that structurally similar antimicrobial
oxazolidones such as posizolid, tedizolid, radezolid and linezolid or cycloserine serve as inhibitors of
protein synthesis that prevent binding of N-formylmethionyl-tRNA to the ribosome. [33].Molbank 2019, 2019, x 2 of 9 
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Figure 1. The structure of isoxazolone derivatives. 

Recently, our research group reported antibacterial [34] and antifungal [35] N-substituted 
derivatives of 4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one 1, which were obtained in N1-
alkylation, N1-acylation, and N1-sulfonation reactions. Moreover, we have implemented compound 
1 and its benzo analogue, isoxazolo[3,4-b]quinolone-3(1H)-one 2, to tandem Mannich—electrophilic 
amination reactions with formaldehyde and (fluoro)quinolones as secondary amines to obtain hybrid 
quinolone-based quaternary ammonium compounds with proved antibacterial and antibiofilm 
activities along with enhanced hydrophilic properties [36,37]. Furthermore, our studies aimed at 
reactivity exploration of isoxazolones proved that under alkaline conditions the said heterocyclic ring 
system (2) undergoes N1-alkylation followed by bimolecular base-catalyzed acyl-oxygen cleavage 
(BAC2) and O-alkylation to yield N,O-dialkyl hydroxylamines (Scheme 1) [38]. Finally, we found that 
compounds 1 and 2 react with α,β-acetylenic carbonyl compounds (Michael acceptors) to give N-
vinyl isoxazolones, which transform into N-vinylhydroxylamines by means of BAC2 cleavage of C-O 
bond. The later react with an excess of Michael acceptors to yield N,O-divinylhydroxylamines 
(enamines) that undergo [3,3]-sigmatropic rearrangement to give Paal–Knorr intermediates (Scheme 
1) [39]. These findings prompted us to examine the aza-Michael addition reaction of isoxazolone 2 to 
double activated electron-deficient acetylene, i.e., dimethyl acetylenedicarboxylate (DMAD). 

Herein, we describe a facile approach to 2,2’-((1,4-dimethoxy-1,4-dioxobutane-2,3-
diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid) 3 along with its characterization by 
experimental methods such as 1H-NMR, IR, HRMS, and elemental analysis, as well as theoretical DFT 
calculations. 
  

Figure 1. The structure of isoxazolone derivatives.
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Recently, our research group reported antibacterial [34] and antifungal [35] N-substituted
derivatives of 4,6-dimethylisoxazolo[3,4-b]pyridin-3(1H)-one 1, which were obtained in N1-alkylation,
N1-acylation, and N1-sulfonation reactions. Moreover, we have implemented compound 1
and its benzo analogue, isoxazolo[3,4-b]quinolone-3(1H)-one 2, to tandem Mannich—electrophilic
amination reactions with formaldehyde and (fluoro)quinolones as secondary amines to obtain hybrid
quinolone-based quaternary ammonium compounds with proved antibacterial and antibiofilm activities
along with enhanced hydrophilic properties [36,37]. Furthermore, our studies aimed at reactivity
exploration of isoxazolones proved that under alkaline conditions the said heterocyclic ring system (2)
undergoes N1-alkylation followed by bimolecular base-catalyzed acyl-oxygen cleavage (BAC2) and
O-alkylation to yield N,O-dialkyl hydroxylamines (Scheme 1) [38]. Finally, we found that compounds 1
and 2 react with α,β-acetylenic carbonyl compounds (Michael acceptors) to give N-vinyl isoxazolones,
which transform into N-vinylhydroxylamines by means of BAC2 cleavage of C-O bond. The later react
with an excess of Michael acceptors to yield N,O-divinylhydroxylamines (enamines) that undergo
[3,3]-sigmatropic rearrangement to give Paal–Knorr intermediates (Scheme 1) [39]. These findings
prompted us to examine the aza-Michael addition reaction of isoxazolone 2 to double activated
electron-deficient acetylene, i.e., dimethyl acetylenedicarboxylate (DMAD).
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Scheme 1. Base-promoted reactivity of isoxazolones. 

2. Results and discussion 

2.1. Chemistry 

We have performed the reaction of isoxazolone 2 with DMAD in anhydrous methanol at room 
temperature. Triethylamine was used as a base to deprotonate the acidic isoxazolone ring and hence 
form an ambident nucleophile capable to serve as a Michael donor. We reasoned that in the case of 
the reaction between compound 2 and double activated acetylene derivatives such as DMAD, dual 
addition to the Michael acceptor would occur (product A, Scheme 2). Unexpectedly, the isolated 
compound proved alternate structure as evidenced by 1H-NMR spectrum (Supplementary 
Materials). The analysis of the spectrum revealed a lack of the aliphatic signal of the methine CH 
groups as depicted in structure A. Instead, two acidic protons were observed as broad singlet at δ = 
13.85. Presumably, the initial step of the reaction sequence involved nucleophilic attacks of 
isoxazolones on the α,β-unsaturated carbonyl compound. The initially formed intermediate A 
undergoes base-promoted [1,3]-hydrogen shifts with isoxazolone rings cleavage to yield 2,3-
diiminosuccinate derivative 3. The elucidated structure was supported by the results of the high-
resolution mass spectrometry and elemental analysis. 
  

Scheme 1. Base-promoted reactivity of isoxazolones.

Herein, we describe a facile approach to 2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis
(azanylylidene))bis(quinoline-3-carboxylic acid) 3 along with its characterization by experimental
methods such as 1H-NMR, IR, HRMS, and elemental analysis, as well as theoretical DFT calculations.

2. Results and discussion

2.1. Chemistry

We have performed the reaction of isoxazolone 2 with DMAD in anhydrous methanol at room
temperature. Triethylamine was used as a base to deprotonate the acidic isoxazolone ring and hence
form an ambident nucleophile capable to serve as a Michael donor. We reasoned that in the case of the
reaction between compound 2 and double activated acetylene derivatives such as DMAD, dual addition
to the Michael acceptor would occur (product A, Scheme 2). Unexpectedly, the isolated compound
proved alternate structure as evidenced by 1H-NMR spectrum (Supplementary Materials). The analysis
of the spectrum revealed a lack of the aliphatic signal of the methine CH groups as depicted in structure
A. Instead, two acidic protons were observed as broad singlet at δ = 13.85. Presumably, the initial step
of the reaction sequence involved nucleophilic attacks of isoxazolones on the α,β-unsaturated carbonyl
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compound. The initially formed intermediate A undergoes base-promoted [1,3]-hydrogen shifts with
isoxazolone rings cleavage to yield 2,3-diiminosuccinate derivative 3. The elucidated structure was
supported by the results of the high-resolution mass spectrometry and elemental analysis.
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Scheme 2. The synthesis of 3 (2,2’-((1,4-dimethoxy-1,4-dioxobutane-2,3-
diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid). 

2.2. DFT Calculations 

Quantum-chemical calculations were carried out to rationalize the formation of product 3. The 
results obtained with density functional calculations (DFT) revealed that compound 3 is more 
favorable than the double Michael addition product A, both in gas phase and in the solvent (Table 1). 
Hence, the data obtained with use of B3LYP, ωB97XD, and APFD methods indicate that isomer 3 is 
36.8 to 51.4 kcal/mol more stable than the intermediate A. Albeit the predictions are to some extent 
sensitive to variation of the functional type applied, the results unequivocally prove that the base-
promoted [1,3] proton shifts that comprise isoxazolone ring opening transformations are intensely 
exothermic. 
  

Scheme 2. The synthesis of 3 (2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))
bis(quinoline-3-carboxylic acid).

2.2. DFT Calculations

Quantum-chemical calculations were carried out to rationalize the formation of product 3.
The results obtained with density functional calculations (DFT) revealed that compound 3 is more
favorable than the double Michael addition product A, both in gas phase and in the solvent (Table 1).
Hence, the data obtained with use of B3LYP,ωB97XD, and APFD methods indicate that isomer 3 is 36.8
to 51.4 kcal/mol more stable than the intermediate A. Albeit the predictions are to some extent sensitive
to variation of the functional type applied, the results unequivocally prove that the base-promoted
[1,3] proton shifts that comprise isoxazolone ring opening transformations are intensely exothermic.

Table 1. Relative electronic energies (∆E), and Gibbs free energies (∆G) for isomers A and 3 calculated
using B3LYP, ωB97XD, and APFD density functionals and 6-31G+(d) basis set in vacuum and with
PCM (MeOH) solvation model.

Relative Energy
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Vacuum A 3 
ΔE (kcal/mol)   

B3LYP 0 −46.5 
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ΔG (kcal/mol)   
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ΔE (kcal/mol)   
B3LYP 0 −47.8 
ωB97XD 0 −42.2 

APFD 0 −38.4 
ΔG (kcal/mol)   

B3LYP 0 −51.4 
ωB97XD 0 −47.4 

APFD 0 −41.1 

3. Materials and Methods 

3.1. General Methods 

All reagents and solvents were purchased from commercial sources (Acros Organics, Geel, 
Belgium; Alfa-Aesar, Haverhill, MA, USA; or Sigma-Aldrich, Saint Louis, MO, USA) and used 
without further purification. Isoxazolo[3,4-b]quinolin-3(1H)-one 2 was obtained according to the 
known procedure [40,41]. Analytical TLC was performed on silica gel Merck 60 F254 plates (0.25 mm) 
with UV light visualization. Melting point was determined on an X-4 melting point apparatus with a 
microscope and was uncorrected. The IR spectrum was recorded on a Thermo Scientific Nicolet 380 
FT-IR spectrometer. The 1H NMR spectrum was registered on a Varian Unity Plus 500 MHz 
spectrometer. 1H NMR data were internally referenced to DMSO-d6 (2.50 ppm). The ESI-MS spectra 
were recorded on Shimadzu single quadrupole LCMS 2010 eV mass spectrometer (Shimadzu, Kyoto, 
Japan). The HRMS spectra were obtained using Agilent LC/MS Q-TOF 6550 mass spectrometer 
(Agilent Technologies, Santa Clara, CA, USA). Elemental analysis was performed with Elementar 
Vario El Cube CHNS (Elementar Analysensysteme GmbH, Langenselbold, Germany). 

3.2. Synthesis of 2,2’-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-
carboxylic acid) (3) 

Isoxazolo[3,4-b]quinolin-3(1H)-one 2 (0.186 g, 1 mmol), dimethyl acetylenedicarboxylate (0.123 
mL, 1 mmol), and triethylamine (0.139 mL, 1 mmol) were dissolved in 10 mL of anhydrous methanol. 
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3. Materials and Methods

3.1. General Methods

All reagents and solvents were purchased from commercial sources (Acros Organics, Geel,
Belgium; Alfa-Aesar, Haverhill, MA, USA; or Sigma-Aldrich, Saint Louis, MO, USA) and used without
further purification. Isoxazolo[3,4-b]quinolin-3(1H)-one 2 was obtained according to the known
procedure [40,41]. Analytical TLC was performed on silica gel Merck 60 F254 plates (0.25 mm) with
UV light visualization. Melting point was determined on an X-4 melting point apparatus with a
microscope and was uncorrected. The IR spectrum was recorded on a Thermo Scientific Nicolet
380 FT-IR spectrometer. The 1H NMR spectrum was registered on a Varian Unity Plus 500 MHz
spectrometer. 1H NMR data were internally referenced to DMSO-d6 (2.50 ppm). The ESI-MS spectra
were recorded on Shimadzu single quadrupole LCMS 2010 eV mass spectrometer (Shimadzu, Kyoto,
Japan). The HRMS spectra were obtained using Agilent LC/MS Q-TOF 6550 mass spectrometer (Agilent
Technologies, Santa Clara, CA, USA). Elemental analysis was performed with Elementar Vario El Cube
CHNS (Elementar Analysensysteme GmbH, Langenselbold, Germany).

3.2. Synthesis of 2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic
acid) (3)

Isoxazolo[3,4-b]quinolin-3(1H)-one 2 (0.186 g, 1 mmol), dimethyl acetylenedicarboxylate (0.123
mL, 1 mmol), and triethylamine (0.139 mL, 1 mmol) were dissolved in 10 mL of anhydrous methanol.
The reaction was stirred at room temperature and the reaction progress was monitored by TLC
(chloroform). After 12 h, the reaction mixture was concentrated to 5 mL under reduced pressure. Upon
cooling, the precipitated solid was filtered off and washed with diethyl ether (3 × 3 mL). The product
was obtained as a yellow solid. Yield 0.162 g (63%); mp 240 ◦C (with decomposition); IR (KBr) νmax

2952, 1747, 1736, 1627, 1610, 1574, 1557, 1454, 1204, 1133, 1064, 787, 759 cm–1; 1H-NMR (500 MHz,
DMSO-D6) δ 3.76 (s, 6H, OCH3), 7.35 (t, J = 7.8 Hz, 2H, CH), 7.41 (d, J = 7.8 Hz, 2H, CH), 7.79 (t, J = 7.8
Hz, 2H, CH), 7.99 (d, J = 7.8 Hz, 2H, CH), 8.71 (s, 2H, CH), 13.65 (bs, 2H, COOH); ESI-MS positive
ionization m/z 515 [M + 1]+, negative ionization m/z 513 [M − 1]−; HRMS m/z 515.1194 [M + 1]+ (calcd
for C26H19N4O8

+, 515.1197); anal. C 59.61, H 3.59, N 10.74%, calcd for C26H18N4O8·0.5H2O, C 59.66, H
3.66, N 10.70%.

3.3. DFT Calculations

All calculations have been performed with the Gaussian 16 [42] using standard algorithms and
thresholds. The hybrid Becke-3–Lee–Yang–Parr functional (B3LYP) [43], long-range-corrected hybrid
functional ωB97XD [44], as well as Austin–Frisch–Petersson hybrid density functional with dispersion
(APFD) [45] were utilized. The bulk solvent effects were taken into account for the DFT calculations by
means of polarizable continuum model (IEF-PCM) [46]. The 6-31G+(d) standard basis set has been
used in the course of this study. The geometry optimizations for the studied molecules were carried
out in their ground states with the inclusion of solvent effects. Vibrational analyses were used to
verify that the optimized structures correspond to local minima on the energy surface. Gibbs energies
including zero-point corrections, temperature corrections, and vibrational energies were computed for
standard conditions (T = 298.15 K, P = 1.0 atm) using the harmonic oscillator approximation.

4. Conclusions

In summary, we have shown that isoxazolone 2 in the presence of triethylamine reacts with
highly electrophilic DMAD via double aza-Michael addition followed by [1,3]-H shifts to give
2,2′-((1,4-dimethoxy-1,4-dioxobutane-2,3-diylidene)bis(azanylylidene))bis(quinoline-3-carboxylic acid)
3 in good yield. The structure of compound 3 was confirmed by spectroscopic characterization.
Finally, compound 3 was proven to be significantly more stable than intermediate A as evidenced by
DFT calculations.
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