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Abstract: In the course of an ongoing synthetic project, we observed an unprecedented reactivity of
N-methyl groups in bis(N,N-dimethylaminoethylferrocenyl)phenylphosphinesulfide upon treatment
with manganese dioxide (MnO,). The intramolecular course of this reaction resulted in the formation
of an unexpected homochiral diaza macrocycle. The target structure was accessible in two steps from
known N,N-dimethylaminoethylferrocene.
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1. Introduction

Ferrocene derivatives bearing at least two different substituents at the same ring are planar chiral
and represent an important back bone frequently found in ligands for asymmetric catalysis. The
ease of introducing a broad range of substituents with various heteroatoms and functional groups
at C1 and C2 of the Cp ring has promoted the build-up of ligand libraries. Together with high
chemical and configurative stability, ferrocene ligands are well established in asymmetric catalysis,
academic research as well as in industry. A particular successful industrial application was the
synthesis of the pesticide metolachlor applying the ferrocene-based P,P-ligand Xyliphos [1]. In several
cases, the degree of asymmetric induction was further enhanced by the incorporation of a second
ferrocene unit [2]. To date, diferrocenes have been used as asymmetric ligands for transition metal
catalyzed hydrosilylations [3], hydride transfer reactions [4], acetalizations [5], hydroaminations [6],
hydrogenations [7], hydroalkoxylations, [8], and allylic substitutions [2]. Moreover, ferrocene
derivatives were also applied as organocatalysts for the Morita-Baylis-Hillman addition [9], Lu
cyclization [10], and 1,3-dipolar cycloaddition [11].

As it was frequently observed that catalysts with well-defined geometry show a higher degree of
enantioselectivity, we were interested in developing protocols to connect the two ferrocenes with a two
to four atom bridge. For the resulting 7- to 8-membered diferrocenophospha macrocycles, a higher
degree of rigidity can be expected. Similar structures have been reported by Togni et al. [8].

2. Results and Discussion

Scheme 1 presents the synthetic path. We prepared the known key intermediate 2 from enantiopure
precursor 1 [12] via stereoselective ortho-lithiation [13,14] using a known protocol with tert-butyl
lithium as the base [8]. The phosphino group was protected as a phosphine sulfide by reaction with
elemental sulfur yielding compound 3 quantitatively. From here, we attempted to transform the side
chains into ferrocenylmethyl ketones. These groups would enable ring closing via pinacol coupling,
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benzoin coupling, or McMurry coupling to yield trans-diferroceno phosphepines potentially useful as
asymmetric ligands.
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Scheme 1. Synthesis of diazaphospha cycle 4.

Fleischer et al. reported an oxidation procedure for aminomethylferrocenes to remove a chiral
auxiliary oxidatively yielding aldehydes [15]. Therefore, we performed a modified MnO,-driven
oxidation with 3, but instead of the desired diacetyl compound 5, we recovered a product identified
as aminal 4, which was identified by NMR (see the supplementary materials) due to its striking
similarity with precursor 3, except for the loss of six aminomethyl signals in the 'H NMR spectrum
and the emergence of the CH, signal at 77.61 ppm in the '3C spectrum, which corresponds closely
to the expected shift of formaldehyde aminal carbons in a ring. It appears that one of the N-methyl
groups was oxidized, closing the 10-membered ring by forming a C-N bond with the opposite amino
group. Formally, one methyl group was lost, but the structure of this by-product was not investigated.
Curiously, we recovered only product 4 with the methyl group oxidized instead of the more plausible
quasi-benzylic one. This may be due to steric hindrance of the x-methyl group, however, in other
experiments, we observed that these positions can in fact be substituted.

MnO; is well-known as a chemoselective reagent oxidizing benzylic and allylic alcohols or amines
to carbonyls selectively. To our knowledge, however, only one work has mentioned a somewhat similar
oxidation of aminal carbons to amide equivalents. While we report the activation of an Ar—-C-N-C-H
bond to form a C-N bond, Tobrmann et al. reported on an oxygen atom insertion into an Ar-N-C-H
bond [16].

This raises questions about the mechanism. The aminoalkylation protocol reported here does
not enable monitoring by NMR, but previously, MnO;-based oxidations were found to take place via
a radical mechanism as deduced from a chemically induced dynamic nuclear polarization (CIDNP)
NMR experiment [17]. Therefore, we speculate that this novel chemoselective C-N bond formation
might also take place via a radical mechanism. Why was the methylamine carbon activated and not
the more stable carbon adjacent to ferrocene? The most plausible reason is the bulky, substituted
ferrocene unit sterically hindering contact with the surface of the reactive MnO, particles and might be
a consequence of the heterogeneous reaction type.
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3. Materials and Methods

3.1. General

Reaction progress was monitored by TLC (SiO, or Al,O3 sheets with F 254 fluorescence indicator).
Preparative column chromatography was carried out with a Biotage Isolera One automated flash
chromatography instrument using self-packed columns (Macherey-Nagel silica gel 60 M, 40-63 pum).
3IP-NMR spectra were recorded in CDCl3 using a 400 MHz Bruker AVIII 400 spectrometer operating
162.04 MHz (*'P). 'H-NMR spectra, '>*C-NMR spectra, and 2D spectra were recorded either on a
600 MHz Bruker AVIII 600 spectrometer (Bruker Biospin, Billerica, MA, USA) operating at 600.25 MHz
(*H) and 150.95 MHz (*3C) or on a Bruker AVIII 700 spectrometer at 700.40 MHz ('H) and 176.13 MHz
(13C), respectively. 1>*C-NMR spectra were recorded in J-modulated mode. Chemical shifts & were
referenced to CHCl; or CDClj at 7.26 ppm (\H-NMR) or 77.00 ppm (**C-NMR), respectively, and
to 85% H3POy4 at 0.00 ppm (' P-NMR). HRMS were recorded by a Bruker Maxis ESI 0a-RTOF mass
spectrometer equipped with a quadrupole analyzer ion guide.

3.2. Synthesis
1,1”-(Phenylphosphinidenesulfide)bis[(2S)-2-[(1R)-1-(dimethylamino)-ethyl]lferrocene (3)

Diaminoferrocenylphosphine 2 [12] (315 mg, 0.51 mmol) and sulfur (100 mg, 3.12 mmol, 6.14 equiv.)
were dissolved in toluene (4 mL) in a flame-dried Schlenk tube. The solution was degassed, set
under Ar, and stirred under reflux for 4 h. After cooling, the solvent was removed under reduced
pressure and the crude product was purified by column chromatography (Ets;N/Et,O, 1.5/98.5) to yield
phosphinesulfide 3 (331 mg, quant.) as an orange oil. TH-NMR (600 MHz,) 6 = 7.87 (dd, | = 12.8,
7.6 Hz, 2H); 7.37-7.29 (m, 3H); 5.07 (q, ] = 6.7 Hz, 1H); 4.49 (m, 1H); 4.38 (s, 5H); 4.34 (q, ] = 6.8 Hz, 1H);
4.32 (m, 2H); 4.29 (m, 1H); 4.26 (m, 1H); 4.21 (m, 1H); 3.78 (s, 5H); 2.26 (s, 6H); 1.42 (s, 6H); 1.38 (d,
] = 6.8 Hz, 3H); 1.10 (d, ] = 6.7 Hz, 3H) ppm. *C-NMR (151 MHz) & = 138.19 (d, Jcp = 91.5 Hz, Co)
131.17 (d, Jcp = 10.2 Hz, CH); 129.14 (d, Jcp = 2.5 Hz, CH); 126.47 (d, Jcp = 12.3 Hz, CH); 98.11 (d, Jcp
=11.8 Hz, Cq); 93.84 (d, Jcp = 11.4 Hz, Cq); 79.18 (d, Jcp = 96.6 Hz, Cy); 74.37 (d, Jcp = 11.6 Hz, CH);
74.07 (d, Jcp = 11.6 Hz, CH); 72.27 (d, Jcp = 94.2 Hz, Cq); 70.87 (CH); 70.59 (d, Jcp = 9.6 Hz, CH); 70.47
(CH); 70.44 (d, Jcp = 9.4 Hz, CH); 68.64 (d, Jcp = 9.7 Hz, CH); 66.57 (d, Jcp = 10.5 Hz, CH); 54.91 (CH);
53.67 (CH); 40.35 (CH3); 38.55 (CH3); 10.97 (CHj); 8.95 (CH3) ppm. 3'P-NMR § = 40.55 (s) ppm. HRMS:
m/z calculated for CsyHyFeaNoPS [M + H]*: 653.1505, found: 653.1507.

Formaldehyde-1,1"-(phenylphosphinidenesulfide)bis[(2S)-2-[(1R)-1-(methylamino)-ethyl]]ferrocene-aminal (4)

A suspension of phosphinesulfide 3 (57 mg, 0.09 mmol) and MnO; (96 mg, 1.10 mmol, 12.7 equiv.)
in toluene (1.5 mL) was refluxed under Ar for 72 h. The reaction mixture was cooled to r.t. and the
black material was filtered off. The remaining orange solution was washed with water (2 mL) and brine
(2mL), and dried over MgSO,. The solvent was removed and the residue was subjected to column
chromatography (EtO/EtzN (98.5/1.5), 0—100%)/heptane) yielding diazaphospha cycle 4 (13 mg, 23%)
as an orange solid. 'H-NMR (700 MHz) § = 7.66 (s, 2H); 7.42 (tq, ] = 7.6, 1.3 Hz, 1H); 7.38-7.33 (m, 2H);
5.19 (m, 1H); 4.81 (m, 1H); 4.68 (m, 1H); 4.56 (s, 5H); 4.46 (m, 1H); 4.44 (m, 1H); 4.36 (m, 1H); 4.35 (s, 5H);
3.05(d, ] =123 Hz, 1H); 2.84 (d, ] = 12.3 Hz, 1H); 2.83 (q, ] = 6.9 Hz, 1H); 2.33 (q, | = 6.8 Hz, 1H); 2.13
(s, 3H); 1.94 (s, 3H) ppm. 3C-NMR (176 MHz) § = 137.55 (d, Jcp = 90.1 Hz, Cq); 132.36 (d, Jcp = 10.9 Hz,
CH); 130.82 (d, Jcp = 2.9 Hz, CH); 127.42 (d, Jcp = 12.6 Hz, CH); 97.55 (d, Jcp = 10.7 Hz, Cg); 93.72
(d, Jep = 8.3 Hz, Cy); 78.31 (d, Jcp = 96.3 Hz, Cy); 77.67 (d, Jcp = 92.0 Hz, Cy); 77.61 (CH>); 76.28 (d,
Jcp = 15.4 Hz, CH); 72.81 (d, Jcp = 17.1 Hz, CH); 71.60 (CH); 70.82 (CH); 69.85 (d, Jcp = 8.2 Hz, CH);
69.78 (d, Jcp = 11.8 Hz, CH); 69.63 (d, Jcp = 9.4 Hz, CH); 69.15 (d, Jcp = 11.7 Hz, CH); 55.93 (CH); 50.18
(CH); 40.73 (CH3); 34.54 (CH3); 23.12 (CH3); 10.53 (CH3) ppm. 3'P-NMR § = 54.44 (s) ppm. HRMS:
mj/z calculated for Ca3H37Feo,NoPS [M + H]*: 637.1192, found: 637.1174.
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Supplementary Materials: The following are available online, Figure S1: 'H-HMR spectrum of compound 3,
Figure S2: 13C-NMR spectrum of compound 3, Figure S3: 'H-NMR spectrum of compound 4, Figure S4: 13C-NMR
spectrum of compound 4.
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