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Abstract: The reaction of 2,4,5,6-tetrachloropyrimidine (4) and 4,5,6-trichloropyrimidine-2-
carbonitrile (1) with DABCO (1 equiv.), in MeCN, at ca. 20 ◦C gives 2,4,5-trichloro-6-[4-(2-chloroethyl)
piperazin-1-yl]pyrimidine (5) and 4,5-dichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-
carbonitrile (6) in 42% and 52% yields, respectively. The new compounds were fully characterized.
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1. Introduction

Piperazines and pyrimidines are useful nitrogen heterocycles owing to their use in pharmaceuticals.
Among nitrogen heterocycles, these two rank as third and tenth in the most frequently used in U.S. FDA
approved drugs [1]. Examples of piperazine-containing drugs include the antihypertensive prazosin
and the antibiotic ciprofloxacin, while examples of pyrimidine drugs are fluorouracil (anticancer) and
trimethoprim (antibacterial) (Figure 1).
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Figure 1. Piperazine- and pyrimidine-containing drugs.

Piperazines are often used as linkers in medicinal chemistry as well as to improve physicochemical
properties of drug molecules such as water solubility and pharmacokinetic properties [2].
Unsymmetrical N-substituted piperazines and, in particular, those containing the N-ethylpiperazine
moiety are useful pharmacophores but are often tricky to prepare [1–3]. One strategy to access
these compounds is starting from the familiar tertiary amine 1,4-diazabicyclo[2.2.2]octane (DABCO).
DABCO acts as a nucleophile in a variety of displacement reactions and often leads to the formation
of quaternary ammonium salts that, in the presence of other nucleophiles, can ring open forming
substituted N-ethylpiperazines [2–5].

Of particular interest are N-(2-chloroethyl)piperazines as these can be further functionalized via
the 2-chloroethyl group. Surprisingly few reports of such compounds are found in the literature [6–11],
and often the chloroethyl moiety was not isolated but converted in situ to other derivatives by
nucleophilic displacement of the chloride [2–5].
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As part of our ongoing work in the chemistry of 1,2,6-thiadiazines [12,13], we identified
4,5,6-trichloropyrimidine-2-carbonitrile (1) as a product of the chloride-induced thermal degradation
of 3,4,4,5-tetrachloro-4H-1,2,6-thiadiazine (2) (Scheme 1) [12], while the same product has reappeared
in previous work with 1,2,6-thiadiazines [13–15].
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Scheme 1. Isolation of trichloropyrimidine 1 from 3,4,4,5-tetrachloro-4H-1,2,6-thiadiazine (2).

We are interested in studying the use of trichloropyrimidine 1 as a synthetic scaffold as it offers
multiple sites of reactivity towards heteroatom nucleophiles or organometallic reagents. Previous efforts
to access pyrimidine 1 involve the use of the starting material 4,6-dichloro-2-(methylthio)-pyrimidine
(3) [16,17]. Another potentially useful scaffold for accessing pyrimidine 1 is the readily available
2,4,5,6-tetrachloropyrimidine (4), prepared by the treatment of barbituric acid with a refluxing mixture
of PCl5 and POCl3 in 67% yield [18]. Retrosynthetically, the C2 cyano group of pyrimidine 1 could be
introduced via a nucleophilic displacement of the C2 chloride of tetrachloropyrimidine 4 (Scheme 2).
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Scheme 2. Structure of 4,6-dichloro-2-(methylthio)pyrimidine (3) and retrosynthetic analysis of
trichloropyrimidine 1.

2. Results and Discussion

We subjected tetrachloropyrimidine 4 to a variety of displacement conditions involving the use of
KCN with 18-crown-6 (0.1 equiv.), in the solvents MeCN, dioxane, DCM, or H2O and temperature
ranging between 20 and 100 ◦C, which led to either no reaction or degradation of the starting material.
In light of this, we turned to using n-Bu4NCN as the cyanide source that has been reported to afford
the cyanide substitution of 4-chloropyrimidine derivatives [19]. We therefore screened this reagent in
the presence of DABCO, which was used as a catalyst for the reported transformation [19]. Reaction
with n-Bu4NCN (2 equiv.) in the solvents MeCN, DMSO, acetone, PhH, MeOH, or even neat led to the
degradation of the starting material. Similarly, biphasic systems such as DCM/H2O or Pd-catalyzed
conditions (Pd(OAc)2 with the ligand dppb) [20] also led to degradation of the starting materials.

Interestingly, among our efforts to displace the C2 chloride in the presence of DABCO,
we observed the formation of a colorless side-product, identified as 2,4,5-trichloro-6-[4-(2-chloroethyl)
piperazin-1-yl]pyrimidine (5), which was isolated in 17% yield along with 60% recovered starting
material (Scheme 3). Reaction of tetrachloropyrimidine 4 with 1 equiv. of DABCO in MeCN, at ca.
20 ◦C, gave a 42% yield of piperazine 5 as the only product (Scheme 3, see the Supplementary Materials
for NMR spectra).
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Scheme 3. Synthesis of 2,4,5-trichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine (5).

Intrigued by this result, we then subjected 4,5,6-trichloropyrimidine-2-carbonitrile (1) to
the same reaction conditions that led to a slow consumption of the starting material, giving
4,5-dichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-carbonitrile (6) as the only product in
52% yield (Scheme 4, see the Supplementary Materials for NMR spectra). The formation of the two
products 5 and 6 reveals that the most reactive chloride of tetrachloropyrimidine 4, towards DABCO,
is at the C2 position, while the most reactive site in trichloropyrimidine 1 is the C4 position. This result
shows that the chemistry of trichloropyrimidine 1 is complementary to other pyrimidine scaffolds and
supports its potential as a synthetic scaffold.

Molbank 2019, 2019  3 of 4 

 

Scheme 3. Synthesis of 2,4,5-trichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine (5). 

Intrigued by this result, we then subjected 4,5,6-trichloropyrimidine-2-carbonitrile (1) to the 

same reaction conditions that led to a slow consumption of the starting material, giving 4,5-dichloro-

6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-carbonitrile (6) as the only product in 52% yield 

(Scheme 4, see SI for NMR spectra). The formation of the two products 5 and 6 reveals that the most 

reactive chloride of tetrachloropyrimidine 4, towards DABCO, is at the C2 position, while the most 

reactive site in trichloropyrimidine 1 is the C4 position. This result shows that the chemistry of 

trichloropyrimidine 1 is complementary to other pyrimidine scaffolds and supports its potential as a 

synthetic scaffold. 

 

Scheme 4. Synthesis of 4,5-dichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-carbonitrile (6). 

3. Materials and Methods 

The reaction mixture was monitored by TLC using commercial glass-backed thin-layer 

chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed under UV light at 

254 and 365 nm. Acetonitrile (MeCN) was distilled over CaH2 before use. The melting point was 

determined using a PolyTherm-A, Wagner & Munz Kofler Hotstage Microscope apparatus (Wagner 

& Munz, Munich, Germany). The solvent used for recrystallization is indicated after the melting 

point. The UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis 

spectrophotometer (Perkin-Elmer, Waltham, MA, USA), and inflections are identified by the 

abbreviation “inf”. The IR spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer 

(Shimadzu, Kyoto, Japan) with the Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI, USA), 
and strong, medium, and weak peaks are represented by s, m, and w, respectively. 1H and 13C NMR 

spectra were recorded on a Bruker Avance 500 machine (at 500 and 125 MHz, respectively, (Bruker, 

Billerica, MA, USA)). Deuterated solvents were used for homonuclear lock, and the signals were 

referenced to the deuterated solvent peaks. Attached proton test (APT) NMR studies were used for 

the assignment of the 13C peaks as CH3, CH2, CH, and Cq (quarternary). The MALDI-TOF mass 

spectrum (+ve mode) was recorded on a Bruker Autoflex III Smartbeam instrument (Bruker). The 

elemental analysis was run by the London Metropolitan University Elemental Analysis Service. 4,5,6-

Trichloropyrimidine-2-carbonitrile (1) and 2,4,5,6-tetrachloropyrimidine (4) were prepared according 

to the literature procedures [12,18]. 

  

Scheme 4. Synthesis of 4,5-dichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-carbonitrile (6).

3. Materials and Methods

The reaction mixture was monitored by TLC using commercial glass-backed thin-layer
chromatography (TLC) plates (Merck Kieselgel 60 F254). The plates were observed under UV light
at 254 and 365 nm. Acetonitrile (MeCN) was distilled over CaH2 before use. The melting point was
determined using a PolyTherm-A, Wagner & Munz Kofler Hotstage Microscope apparatus (Wagner
& Munz, Munich, Germany). The solvent used for recrystallization is indicated after the melting
point. The UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer
(Perkin-Elmer, Waltham, MA, USA), and inflections are identified by the abbreviation “inf”. The IR
spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer (Shimadzu, Kyoto, Japan)
with the Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI, USA), and strong, medium, and
weak peaks are represented by s, m, and w, respectively. 1H and 13C NMR spectra were recorded
on a Bruker Avance 500 machine (at 500 and 125 MHz, respectively, (Bruker, Billerica, MA, USA)).
Deuterated solvents were used for homonuclear lock, and the signals were referenced to the deuterated
solvent peaks. Attached proton test (APT) NMR studies were used for the assignment of the 13C peaks
as CH3, CH2, CH, and Cq (quarternary). The MALDI-TOF mass spectrum (+ve mode) was recorded on
a Bruker Autoflex III Smartbeam instrument (Bruker). The elemental analysis was run by the London
Metropolitan University Elemental Analysis Service. 4,5,6-Trichloropyrimidine-2-carbonitrile (1) and
2,4,5,6-tetrachloropyrimidine (4) were prepared according to the literature procedures [12,18].
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4,5,6-Trichloro-2-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine (5)

One portion 1,4-diazabicyclo[2.2.2]octane (DABCO, 56.0 mg, 0.500 mmol) was added to a stirred
mixture of 2,4,5,6-tetrachloropyrimidine (4) (109 mg, 0.500 mmol) in MeCN (5 mL) at ca. 20 ◦C.
The mixture was protected with a CaCl2 drying tube and stirred at this temperature until complete
consumption of the starting material (TLC, 48 h). DCM (10 mL) was then added, the mixture adsorbed
onto silica, and chromatography (DCM) gave the title compound 5 (63.3 mg, 42%) as colorless plates,
mp 84–85 ◦C (from MeCN); Rf 0.21 (DCM); (found: C, 36.47; H, 3.76; N, 16.86. C10H12Cl4N4 requires
C, 36.39; H, 3.67; N, 16.98%); λmax(DCM)/nm 262 (log ε 4.76), 332 (3.77); vmax/cm−1 2955 w, 2857 w
and 2810 w (C-H), 1566 s, 1520 w, 1483 m, 1450 w, 1366 w, 1302 m, 1283 m, 1196 m, 1179 w, 1144 w,
1076 w, 1001 m, 986 m, 812 m, 762 m; δH(500 MHz; CDCl3) 3.81 (4H, t, J 5.0, pip. NCH2), 3.61 (2H, t, J
6.8, CH2Cl), 2.77 (2H, t, J 6.8, NCH2), 2.56 (4H, t, J 4.8, pip. NCH2); δC(125 MHz; CDCl3) 159.2 (Cq),
157.2 (Cq), 113.1 (Cq), 59.6 (CH3), 52.7 (CH3), 44.0 (CH3), 40.8 (CH3); m/z (MALDI-TOF) 331 (MH+ + 2,
80%), 329 (MH+, 100), 266 (36).

4,5-Dichloro-6-[4-(2-chloroethyl)piperazin-1-yl]pyrimidine-2-carbonitrile (6)

One portion 1,4-diazabicyclo[2.2.2]octane (DABCO, 56.0 mg, 0.500 mmol) was added to a stirred
mixture of 4,5,6-trichloropyrimidine-2-carbonitrile (1) (104 mg, 0.500 mmol) in MeCN (5 mL) at ca. 20 ◦C.
The mixture was protected with a CaCl2 drying tube and stirred at this temperature until complete
consumption of the starting material (TLC, 4 days). DCM (10 mL) was then added, the mixture adsorbed
onto silica, and chromatography (DCM/Et2O, 95:5) gave the title compound 6 (83.4 mg, 52%) as colorless
needles, mp 47–48 ◦C (from MeOH/−60 ◦C); Rf 0.73 (DCM/Et2O, 95:5); (found: C, 41.27; H, 3.83; N,
21.65. C11H12Cl3N5 requires C, 41.21; H, 3.77; N, 21.84%); λmax(DCM)/nm 237 (log ε4.27), 285 (4.20);
vmax/cm−1 2924 w and 2853 w (C-H), 1647 s, 1468 m, 1450 m, 1445 m, 1371 m, 1302 m, 1269 m, 1234 w,
1209 w, 1161 w, 1144 m, 1128 m, 1096 m, 1040 m, 997 s, 897 m, 800 w, 766 w; δH(500 MHz; CDCl3) 3.86
(4H, t, J 4.9, pip. NCH2), 3.61 (2H, t, J 6.7, CH2Cl), 2.79 (2H, t, J 6.7, NCH2), 2.65 (4H, t, J 4.9, pip. NCH2);
δC(125 MHz; CDCl3) 160.6 (Cq), 159.7 (Cq), 139.5 (Cq), 116.3 (Cq), 114.6 (Cq), 59.3 (CH3), 52.7 (CH3), 47.9
(CH3), 40.7 (CH3); m/z (MALDI-TOF) 324 (MH+ + 4, 35%), 322 (MH+ + 2, 72), 320 (MH+, 100), 217 (11).

Supplementary Materials: The following are available online: molfile, 1H and 13C-NMR spectra.
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