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Abstract: Synthesis of A-ring-modified lupane, oleanane and ursane type triterpenoid conjugates 
with spermidine through an aldimine linkage or diethylentriamine via an amide bond is described. 
These derivatives were evaluated for their in vitro antimicrobial properties against human 
pathogens. Except for derivatives 1 and 7, all compounds have moderate to weak minimum 
inhibitory concentrations (MICs) against Gram-positive Staphylococcus aureus bacteria, with MICs 
varying from 3.125 to 200 µM. Compound 11 is efficient against Escherichia coli and Pseudomonas 
aeruginosa, with MICs of 25 and 50 µM, respectively, while all other derivatives do not possess 
important antimicrobial activities against these Gram-negative bacteria.  

Keywords: triterpenoids; lupane; oleanane; ursane; spermidine; spermine; squalamine; 
antimicrobial activity; Gram-positive bacteria; Gram-negative bacteria 

 

1. Introduction 

Pentacyclic triterpenoids are widely represented in natural products and are useful substrates 
for the synthesis of various important bioactive compounds [1–3]. Conjugation of a triterpenoid 
scaffold with amines, amino acids, and polyamines resulted in a series of anticancer, antimicrobial 
and antiviral agents [4–8]. Chemical antibiotics were one of the great health successes of the 20th 
century leading to a huge decrease in both morbidity and mortality from bacterial infections. 
However, this has led to high levels of inappropriate prescribing, which has contributed to a recent 
rise in the number of antibiotic-resistant bacteria. As a result, multidrug-resistant bacteria such as 
vancomycin-resistant Enterococcus (VRE), methicillin-resistant Staphylococcus aureus (MRSA), and 
multidrug-resistant Pseudomonas aeruginosa (MRPA) have appeared [9]. In this context, new types of 
antibiotics such as antibiotic peptides, lipids, and alkaloids have been isolated as host defense agents 
from diverse animal species [10–12]. Among these substances, two water-soluble cationic steroids, 
squalamine, and trodusquemine, have been identified from the dogfish shark Squalus acanthias, 
exhibiting excellent antimicrobial activities (Figure 1) [13–15]. 
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Figure 1. Structure of squalamine and trodusquemine. 

Since that time, the synthesis of the triterpenoid analog of squalamine has been accomplished 
[16], and novel steroidal polyamines, such as Claramine, that exhibit a broad-spectrum antimicrobial 
bimodal activity, have been discovered [17,18]. Polyamines (putrestycine, spermidine, spermine, 
etc.) play an important role in the physiology of plants and live organisms. They are polycations that 
interact with negatively charged molecules such as DNA, RNA, and proteins. Betulinic acid-based 
amides with putrescine and spermine demonstrate a high level of cytotoxicity and antimicrobial 
activity [19]. At the same time, there are no reports on the synthesis of spermidine conjugates 
connected to the triterpenoid core via the aldimine group. 

In this work, the first synthesis of triterpenoid spermidino-aldimines, as well as some 
derivatives with an A-azepano-ring and C28-(diethylentriamino)-amides is described and the study 
of their antimicrobial activity is presented. 

2. Results and Discussion 

2.1. Chemistry 

The synthesis of a series of nitrogen-containing triterpenoids is presented in Schemes 1 and 2. 
Azepanobetulin 1 was obtained by several stages from naturally-occurring betulin [20]. The 
following p-TsOH catalyzed rearrangement of compound 1 resulted in azepanoallobetulin 2 with a 
yield of 86%. Reduction of lupane A-azepanono-C28-nitryl 3 [21] and 2-cyano-3,4-seco-ursolic acid 4 
[22] with LiAlH4 under reflux in tetrahydrofurane led to methylenamino-derivatives 5 and 6. Betulin 
and C28-hydroxy-triterpenoids 1 or 6 were converted to corresponding aldehydes and were reacted 
with spermidine in MeOH under reflux to obtain aldimines 7–9 in yields of 65–72%. The reaction of 
ursonic or oleanonic acid chlorides with diethylenetriamine led to amides 10 and 11 in yields of 85 
and 73%, respectively. The data for the latter amide have been previously presented [23]. 

The structure of the compounds was confirmed by NMR spectroscopy. The 13C-NMR spectra of 
azepanes 2, 5 and 8 showed signals of C-3 at dC� 62–63 ppm. For aldimines 7–9, the signals of the 
–CH=N– function were detected at δ 169–173 ppm (13C-NMR) and at δ 7.3–7.8 ppm (1H-NMR). In the 
spectra of compound 10, the signal of amide function C(O)NH was detected at δ 178.9 ppm 
(13C-NMR) and at δ 6.61 ppm (1H-NMR). Finally, the presence of polyamine moieties at position C-28 
of the triterpene core in the structure of compounds 7–11 was confirmed by the characteristic signals 
of the aminomethylene groups –CH2NH– at δ 2.58–3.70 ppm (1H-NMR) (see Supplementary 
Materials). 
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Scheme 1. Synthesis of lupane type derivatives. Reagents and conditions: a. TsOH, CHCl3, reflux, 4 h; 
b. PCC, CH2Cl2, rt, 0.5 h; c. NH2(CH2)3NH(CH2)4NH2, MeOH, reflux, 8 h; d. LiAlH4, THF, reflux, 3 h. 

 
Scheme 2. Synthesis of oleanane and ursane type derivatives. Reagents and conditions: a. LiAlH4, THF, 
reflux, 3 h; b. i PCC, CH2Cl2, rt, 0.5 h, ii NH2(CH2)3NH(CH2)4NH2, MeOH, reflux, 8 h; c. i (COCl)2, 
Et3N, CH2Cl2, 20 °C, 2 h, ii diethylenetriamine, CH2Cl2, Et3N, 20 °C, 3 h. 

2.2. Biology 
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All the synthesized compounds were screened for antimicrobial activity against both 
Gram-positive and Gram-negative bacterial strains and found to possess activities (Table 1). Thus, 
except for derivatives 1 and 7, all compounds have moderate to weak minimum inhibitory 
concentrations against Gram-positive S. aureus bacteria with MICs varying from 3.125 to 200 µM. 
Nevertheless, compound 11 is efficient against E. coli and P. aeruginosa, with MICs of 25 and 50 µM, 
respectively, while all other derivatives do not possess important antimicrobial activities against 
these Gram-negative bacteria. It is noteworthy that the minimum bactericidal activity remains of 
interest for all products active against S. aureus. These data clearly suggest that the nature of the 
triterpenoid involved plays an important role in the potential activities of our compounds. 

Table 1. Minimum inhibitory concentrations and minimum bactericidal concentration of compounds 
1, 2, 5, and 7–11. 

Compound 
 

MIC (µM)/MBC (µM) 
S. aureus 
DSM789 

E. coli 
ATCC25299 

P. aeruginosa 
PA01 

1 >200/>200 >200/>200 >200/>200 
2 6.25/25 >200/>200 >200/>200 
5 12.5/25 >200/>200 >200/>200 
7 >200/>200 >200/>200 >200/>200 
8 3.125/6.25 >200/>200 >200/>200 
9 12.5/25 200/>200 200/>200 

10 12.5/25 200/>200 200/>200 
11 12.5/25 25/25 50/>200 

Ciprofloxacine 0.20 0.20 0.20 
Vancomycine 0.80 >200 >200 

3. Materials and Methods 

3.1. General Methods and Physical Measurements 
The spectra were recorded at the Center for the Collective Use ‘Chemistry’ of the Ufa Institute 

of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences. 1H and 
13C-NMR spectra were recorded on a “Bruker AM-500” (Bruker, Billerica, MA, USA, 500 and 125.5 
MHz respectively, δ, ppm, Hz) in CDCl3, internal standard tetramethylsilane. Mass spectra were 
obtained on a liquid chromatograph–mass spectrometer LCMS-2010 EV (Shimadzu, Kyoto, Japan). 
Melting points were detected on a micro table “Rapido PHMK05“ (Nagema, Dresden, Germany). 
Optical rotations were measured on a polarimeter “Perkin-Elmer 241 MC” (PerkinElmer, Waltham, 
MA, USA) in a tube length of 1 dm. Elemental analysis was performed on a Euro EA-3000 CHNS 
analyzer (Eurovector, Milan, Italy); the main standard is acetanilide. Thin-layer chromatography 
analyses were performed on Sorbfil plates (Sorbpolimer, Krasnodar, Russian Federation), using the 
solvent system chloroform–ethyl acetate, 40:1. Substances were detected by 10% H2SO4 with 
subsequent heating to 100–120 °C for 2–3 min. Betulonic aldehyde [24], compounds 1 [20], 3 [21], 
ursonic acid and 4 [22], 11 [23] were obtained according to the methods described previously. 

3.2. Synthesis of 3-Deoxy-3a-homo-3a-aza-19β,28-epoxy-18α-oleanane (2) 

A mixture of compound 1 (220 mg, 0.5 mmol) and a catalytic amount of p-TsOH (8.6 mg, 0.05 
mmol) in dry CHCl3 (25 mL) was heated under reflux for 4 h, and then the solvent was evaporated 
under reduced pressure. The product was purified by Al2O3 column chromatography using CHCl3 
and a mixture of CHCl3–EtOH (100:1) as eluents to afford compound 2 as a beige powder (190 mg, 
86%): [α]D20 +54 (c 0.05, CHCl3), m.p. 261 °C. 1H-NMR (δ, ppm, CDCl3, 125.5 MHz): 3.62 and 3.45 (2H, 
both d, H-28, J = 7.7 Hz), 3.41 (1H, s, H-19), 3.21–3.16 (1H, m, H3b), 2.91–2.82 (1H, m, H3a), 2.02–1.16 
(26H, m, CH, CH2), 1.42, 1.29, 1.01, 0.92, 0.81, 0.74, 0.69 (21H, all s, 7CH3). 13C-NMR (δ, ppm, CDCl3, 
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500 MHz): 90.0 (C-19), 72.4 (C-28), 63.0 (C-3), 54.5 (C-9), 48.2 (C-18), 46.6 (C-4), 41.6 (C-5), 41.2, 40.9, 
39.9, 36.5, 36.1, 34.4, 33.0, 32.5, 31.5, 28.6, 27.7, 26.6, 26.2, 25.8, 24.4, 22.9, 22.8, 22.0, 21.6, 19.9, 16.2, 
15.9, 13.1. Anal. Calcd for C30H51NO: C, 81.57; H, 11.64; N, 3.17. Found: C, 81.60; H, 11.54; N, 3.16. MS 
(APCI): m/z [M + H]+ 442.75, calcd for C30H51NO: 441.74. 

3.3. Synthesis of 5 and 6 

A mixture of compound 3 [21] (225 mg, 0.5 mmol) or compound 4 [22] (226 mg, 0.5 mmol) and 
LiAlH4 (230 mg, 0.65 mmol) in dry THF (20 mL) was refluxed for 3 h and then poured into a 5% HCl 
solution (100 mL). The crude product was extracted with CHCl3 (3 × 40 mL), and then the organic 
layer was washed with H2O, dried over CaCl2 and evaporated under reduced pressure. The product 
was purified by Al2O3 column chromatography using CHCl3 and a mixture of CHCl3–EtOH (100:1; 
50:1, 25:1, 10:1) as eluents to afford compound 5 (187 mg, 85%) or compound 6 (174 mg, 79%) as 
white powders. 

3-Deoxy-3a-homo-3a-aza-lup-20(29)-en-28-methylenamine (5): [α]D20 +96 (c 0.05, CHCl3), m.p. 246 °C. 
1H-NMR (δ, ppm, CDCl3, 125.5 MHz): 4.68 and 4.58 (2H, both s, J = 2.0 Hz, H-29), 3.80–3.78 (1H, m, 
H3b), 3.35–3.29 (1H, m, H3a), 2.90–2.78 (2H, m, H-28), 2.40−1.65 (28H, m, CH, CH2), 1.65 (3H, s, 
H-30), 1.41, 1.17, 1.05, 0.99, 0.85 (15H, all s, 5CH3). 13C-NMR (δ, ppm, CDCl3, 500 MHz): 151.0 (C-20), 
109.2 (C-29), 63.2 (C-3), 60.5, 54.4, 48.5, 47.8, 47.6, 47.4 (C-28), 43.0, 41.2, 40.9, 40.7, 37.7, 34.0, 29.7, 29.0, 
27.9, 26.9, 25.8, 23.0, 22.9, 22.7, 22.0, 21.6, 21.3, 19.1, 16.6, 16.4, 14.5. Anal. Calcd for C30H52N2: C, 81.75; 
H, 11.89; N, 6.36. Found: C, 81.69; H, 11.84; N, 6.30. MS (APCI): m/z [M + H]+ 441.73, calcd for 
C30H52N2: 440.75. 

3-Amino-3,4-seco-28-hydroxy-urs-12(13)-en (6): [α]D20 +54 (c 0.05, CHCl3), m.p. 195 °C. 1H-NMR (δ, 
ppm, CDCl3+C5D5N, 125.5 MHz): 5.10 (1H, s, H-12), 4.82 and 4.78 (2H, both d, H-23, J = 2.8 Hz), 3.20 
and 3.40 (2H, both d, H-28), 3.10 (2H, m, CH2NH2), 2.15−1.00 (25H, m, CH and CH2), 1.65 (3H, s, CH3, 
H-24), 1.22, 1.00, 0.92, 0.78, 0.66 (15H, all s, 5CH3). 13C-NMR (δ, ppm, CDCl3+C5D5N, 500 MHz): 148.7 
(C-4), 139.2 (C-13), 123.3 (C-12), 115.4 (C-23), 69.9 (C-28), 51.8, 48.4, 43.9, 43.6, 41.8, 40.9, 40.6, 39.4, 
38.7, 37.7, 35.8, 34.8, 32.9, 32.6, 32.5, 27.4, 27.1, 25.8, 25.2, 25.1, 24.6, 23.8, 23.0, 21.2, 18.1. Anal. Calcd 
for C30H51NO: C, 81.57; H, 11.64; N, 3.17. Found: C, 81.49; H, 11.70; N, 3.09. MS (APCI): m/z [M + H]+ 
442.73, calcd for C30H51NO: 441.74. 

3.4. Synthesis of Compounds 7–9 

To a solution of compound 1 (221 mg, 0.5 mmol) or compound 6 (220 mg, 0.5 mmol) in CH2Cl2 
(25 mL) pyridinium chlorochromate (PCC) (8.6 mg, 1.2 mmol) was added and the mixture was 
stirred at room temperature until the starting material disappeared (monitored by TLC). After 
completion of the reaction, the mixture was passed through Al2O3, the organic phase was washed 
with H2O (2 × 30 mL), dried over CaCl2 and evaporated under reduced pressure to yield crude 
aldehydes. Then, to a solution of betulonic aldehyde (110 mg, 0.25 mmol) [24] or freshly prepared 
above aldehydes in anhydrous MeOH (25 mL), spermidine (0.05 mL, 0.25 mmol)) was added and the 
reaction mixture was heated under reflux for 8 h, then poured into H2O (50 mL) and the precipitate 
was filtered off, washed with water, and dried in air. The products were chromatographed over 
Al2O3 using CHCl3 and a mixture of CHCl3–EtOH (100:1; 50:1) as eluents to afford compounds 7 (100 
mg, 65%) as a yellow powder, 8 (102 mg, 72%) as a beige powder or 9 (109 mg, 70%) as an orange 
powder. 

3-Oxo-lup-20(29)-en-28-N-(4-aminobutyl)-N-propylamin-28-imine (7): [α]D20 +3 (c 0.25, CHCl3), m.p. 201 
°C. 1H-NMR (δ, ppm, CDCl3, 125.5 MHz): 7.82 (1H, s, CH=N), 4.62 and 4.73 (2H, both d, J = 2.0 Hz, 
H-29), 3.50‒2.68 (8H, m, 4CH2N), 2.10−1.73 (34H, m, CH, CH2), 1.72 (3H, s, H-30), 1.09, 1.08, 1.01, 0.98, 
0.89 (15H, all s, 5CH3). 13C-NMR (δ, ppm, CDCl3, 500 MHz): 219.8 (C-3), 170.9 (C-28), 150.0 (C-20), 
110.1 (C-29), 57.3, 55.1, 49.8, 49.5, 49.3, 48.9, 48.0, 47.9, 47.4, 41.4, 41.2, 39.9, 39.6, 39.0, 37.7, 37.5, 34.3, 
33.6, 32.2, 31.9, 30.8, 30.7, 29.0, 28.1, 27.5, 26.7, 25.5, 21.5, 21.0, 19.2, 16.6, 15.7, 14.9. Anal. Calcd for 
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C37H63N3O: C, 78.53; H, 11.22; N, 7.43. Found: C, 78.49; H, 11.25; N, 7.40. MS (APCI): m/z [M + H]+ 
566.80, calcd for C37H63N3O: 565.92. 

3-Deoxy-3a-homo-3a-aza-lup-20(29)-en-28-N-(4-aminobutyl)-N-propylamin-28-imine (8): [α]D20 +85 (c 0.1, 
CHCl3), m.p. 185 °C. 1H-NMR (δ, ppm, CDCl3, 500 MHz): 7.78 (1H, s, CH=N), 4.60 and 4.72 (2H, both 
d, J = 2.0 Hz, H-29), 3.48–3.32 (2H, m, H3), 2.80–2.58 (8H, m, 4CH2N), 2.10−1.42 (35H, m, CH, CH2), 
1.72 (3H, s, H-30), 1.09, 1.08, 1.01, 0.98, 0.89 (15H, all s, 5CH3). 13C-NMR (δ, ppm, CDCl3, 125.5 MHz): 
169.1 (C-28), 150.2 (C-20), 109.8 (C-29), 62.3 (C-3), 58.0, 55.0, 52.2, 50.0, 48.7, 48.1, 47.8, 47.7, 42.9, 42.5, 
41.4, 41.3, 39.2, 39.1, 37.4, 34.3, 34.0, 32.0, 31.5, 31.0, 30.1, 29.7, 29.4, 29.1, 28.0, 27.3, 26.9, 26.3, 23.2, 
19.2, 16.8, 16.6, 14.3. Anal. Calcd for C37H66N4: C, 78.38; H, 11.73; N, 9.88. Found: C, 78.32; H, 11.70; N, 
9.85. MS (APCI): m/z [M + H]+ 567.93, calcd for C37H66N4: 566.95. 

3-Amino-3,4-seco-urs-12(13)-en-28-N-(3-aminopropyl)-N-(butane-1,4-diamine)-N-propylamin-28-imine (9): 
[α]D20 +91 (c 0.1, CHCl3), m.p. 145 °C. 1H-NMR (δ, ppm, CDCl3, 125.5 MHz): 7.31 (1H, s, CH=N, H-28), 
5.10 (1H, s, H-12), 4.79 and 4.59 (2H, both d, H-23, J = 2.8 Hz), 3.68−2.58 (8H, m, 4CH2N), 2.00−1.63 
(36H, m, CH and CH2), 1.62 (3H, s, CH3, H-24), 1.18, 0.99, 0.90, 0.74, 0.65 (15H, all s, 5CH3). 13C-NMR 
(δ, ppm, CDCl3, 500 MHz): 173.6 (C-28), 147.9 (C-4), 139.5 (C-13), 125.2 (C-12), 113.2 (C-23), 54.2, 52.2, 
50.4, 42.6, 41.6, 41.4, 40.6, 39.7, 39.1, 38.3, 37.7, 36.5, 35.3, 33.9, 32.3, 31.8, 31.6, 30.6, 29.7, 29.3, 28.0, 
26.0, 25.6, 24.4, 23.6, 23.3, 23.0, 21.9, 21.3, 20.7, 20.1, 19.9. Anal. Calcd for C37H66N4: Found: C, 78.38; H, 
11.73; N, 9.88. Found: C, 78.29; H, 11.84; N, 9.79. MS (APCI): m/z [M + H]+ 567.94, calcd for C37H66N4: 
566.95. 

3.5. Synthesis of 3-oxo-urs-12(13)-en-28-N-(2-((2-aminoethyl)amino)ethyl)-2-ethylamide (10) 

A solution of ursonic acid [22] (225 mg, 0.5 mmol) in dry CH2Cl2 (20 mL) and (COCl)2 (1.5 
mmol, 0.13 mL) was stirred at room temperature for 2 h and then was concentrated to dryness under 
reduced pressure. A resulting ursonic acid chloride (235 mg, 0.5 mmol) was dissolved in dry CH2Cl2 
(30 mL) and treated with diethylenetriamine (0.05 mL, 0.5 mmol) and Et3N (0.07 mL, 0.5 mmol). It 
was then stirred at room temperature for 3 h, washed with 5% HCl solution (2 × 50 mL) and H2O (50 
mL), dried over CaCl2, and the solvent was removed under reduced pressure. The product was 
chromatographed over a column of Al2O3 using CHCl3 and a mixture of CHCl3–EtOH (100:1; 70:1, 
40:1) as eluents to afford compound 10 (229 mg, 85%) as a yellow powder. [α]D20 +35 (c 0.1, CHCl3), 
m.p. 178 °C. 1H-NMR (δ, ppm, CDCl3, 125.5 MHz): 6.61 (1H, s, CONH), 5.30 (1H, s, H-12), 4.50−4.25 
(3H, m, NH, NH2), 3.70−2.70 (8H, m, 4CH2), 2.55−1.36 (23H, m, CH and CH2), 1.35, 1.19, 1.10, 0.99, 
0.89, 0.75, 0.65 (21H, all s, 7CH3). 13C-NMR (δ, ppm, CDCl3, 500 MHz): 217.6 (C-3), 178.9 (C-28), 139.4 
(C-13), 126.8 (C-12), 58.1, 55.2, 54.9, 53.4, 52.5, 48.3, 47.4, 46.7, 42.2, 39.7, 39.5, 38.9, 37.3, 36.6, 34.1, 32.6, 
30.9, 28.1, 27.8, 26.6, 24.8, 24.6, 23.5, 23.3, 21.2, 19.6, 19.1, 18.8, 18.4, 17.2. Anal. Calcd for C34H57N3O2: 
C, 75.65; H, 10.64; N, 7.78. Found: C, 75.59; H, 10.58; N, 7.70. MS (APCI): m/z [M + H]+ 540.82, calcd for 
C34H57N3O2: 539.84. 

4. Biology Methods 

4.1. Determination of Minimal Inhibitory Concentrations 

The antimicrobial activity of the compounds 1, 2, 5, and 7–11 was studied by determination of 
minimal inhibitory concentrations (MICs) according to the NCCLS guidelines M7-A2 using the 
microbroth dilution methods. All of the strains were issued from the Institute Pasteur collection 
(Paris, France). The bacteria strains were grown on trypticase soy agar (Becton Dickinson) at 37 °C 
for 24 h (E. coli ATCC25299, S. aureus DSM789, P. aeruginosa (PA01)) in MHII broth for P. aeruginosa, 
E. coli and S. aureus. Inocula were prepared in MHII by adjusting the turbidity at 623 nm to obtain 106 
CFU/mL. 

Antimicrobial activities of the compounds were determined by using a broth microdilution 
method performed in sterile 96-well microplates. All compounds were solubilized in methanol at a 
concentration of 5 mg/mL and were transferred to each microplate well (in all cases concentrations 
of the desired molecules in methanol did not exceed 2% of the total proportion). In order to obtain a 
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two-fold serial dilution, 100 µL of broth and 100 µL of inocula containing 5 × 105–106 CFU of each 
bacteria were added to each well. Several wells were reserved for positive controls, inoculum 
viability, and solvent effect. After 24 h incubation, growth was assayed by absorbance measurement 
at 623 nm with an IEMS Labsystem automatic plate reader. MIC was defined for each agent from 
triplicate observations as the lowest concentration of compound allowing no visible growth. 

5. Conclusions 

Finally, a series of triterpenoid C-28 polyamine conjugates or A-azepanes was synthesized and 
evaluated for their antimicrobial activity. Among them, oleanonic acid amide with 
diethylentriamine appears to be an interesting antimicrobial candidate against both Gram-positive 
and Gram-negative bacteria. Current studies are underway to evaluate the potentiality of such 
derivatives in vivo, by determining the cytotoxicity of these compounds, establishing the mechanism 
of action of this new class of antimicrobial agents and designing more active derivatives by varying 
the nature of the polyamine chain involved. 

Supplementary Materials: The following are available online, Figures S1–S18: 1H and 13C spectra for 
compounds 1, 2, 5–11, Scheme S1: Full synthetic route from betulin to compounds 1, 2 and 8 and from betulonic 
aldehyde to compounds 3, 5 and 7, Scheme S2: Full synthetic route from ursonic and oleanonic acids to 
compounds 4, 6 and 9–11. 
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