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Abstract: The reaction of 3-chloro-5-methoxy-4H-1,2,6-thiadiazin-4-one (9) with Na2S·9H2O (0.5 equiv)
in tetrahydrofuran (THF) at ca. 20 ◦C for 20 h gives 5,5′-thiobis(3-methoxy-4H-1,2,6-thiadiazin-4-one)
(10) in a 44% yield as yellow needles. The compound was fully characterized.
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1. Introduction

4H-1,2,6-thiadiazines are a class of heterocycles that do not occur in nature but have interesting
applications: some 5-substituted 3-chloro-4H-1,2,6-thiadiazines show plant antifungal activity [1–5],
while others display liquid crystalline or near-infrared dye behavior [6,7]. Moreover, certain
4H-1,2,6-thiadiazines were proposed to be precursors to radical anions for organic magnetic and
conducting materials [8]. π-conjugated polymers of 1,2,6-thiadiazines were proposed by both
Woodward [9] and Rees [10–12] as potentially stable substitutes to the superconductor poly(sulfur
nitride) (SN)x. Recently, 4H-1,2,6-thiadiazines were characterized by resonance Raman (RR), absorption
(UV-vis) and photoluminescence (PL) spectroscopies in order to better understand their optical
properties [13]. Amino-substituted 1,2,6-thiadiazinones were shown to behave as narrow spectrum
calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) inhibitors [14], demonstrating
potential applications of the system in medicinal chemistry. A recent review describes the chemistry of
non-S oxidized 1,2,6-thiadiazines [15].

As part of our ongoing interest with 1,2,6-thiadiazines, we investigated the synthesis of a thioamide
functional group onto the 1,2,6-thiadiazine ring. Thioamide-containing azaarenes including pyridines
and pyrimidines have numerous uses in medicinal chemistry. For example, pyridine 1 was a weak
AChE inhibitor [16], pyridine 2 was investigated as a metaloenzyme inhibitor [17], while pyridine 3 is
a reverse transcriptase inhibitor and is useful as an anti-HIV agent [18] (Figure 1).
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1. Introduction 

4H-1,2,6-thiadiazines are a class of heterocycles that do not occur in nature but have interesting 
applications: some 5-substituted 3-chloro-4H-1,2,6-thiadiazines show plant antifungal activity [1–5], 
while others display liquid crystalline or near-infrared dye behavior [6,7]. Moreover, certain 4H-1,2,6-
thiadiazines were proposed to be precursors to radical anions for organic magnetic and conducting 
materials [8]. π-conjugated polymers of 1,2,6-thiadiazines were proposed by both Woodward [9] and 
Rees [10–12] as potentially stable substitutes to the superconductor poly(sulfur nitride) (SN)x. 
Recently, 4H-1,2,6-thiadiazines were characterized by resonance Raman (RR), absorption (UV-vis) 
and photoluminescence (PL) spectroscopies in order to better understand their optical properties [13]. 
Amino-substituted 1,2,6-thiadiazinones were shown to behave as narrow spectrum 
calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) inhibitors [14], demonstrating 
potential applications of the system in medicinal chemistry. A recent review describes the chemistry 
of non-S oxidized 1,2,6-thiadiazines [15]. 

As part of our ongoing interest with 1,2,6-thiadiazines, we investigated the synthesis of a 
thioamide functional group onto the 1,2,6-thiadiazine ring. Thioamide-containing azaarenes 
including pyridines and pyrimidines have numerous uses in medicinal chemistry. For example, 
pyridine 1 was a weak AChE inhibitor [16], pyridine 2 was investigated as a metaloenzyme inhibitor 
[17], while pyridine 3 is a reverse transcriptase inhibitor and is useful as an anti-HIV agent [18] 
(Figure 1). 
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Figure 1. Biologically active thioamide-containing azaarenes. 

1,2,6-thiadiazines could act as isosters to other 6-membered hetarenes; therefore, the formation 
of a thioamide onto the thiadiazine could offer a new scaffold for the synthesis of biologically active 

Figure 1. Biologically active thioamide-containing azaarenes.

1,2,6-thiadiazines could act as isosters to other 6-membered hetarenes; therefore, the formation
of a thioamide onto the thiadiazine could offer a new scaffold for the synthesis of biologically active
molecules. Some related amide-containing thiadiazines have been prepared, such as thiadiazinone 5,
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which can exist in the tautomeric form 5′ by the displacement of the C-5 chloride of dichlorothiadiazinone
4 with hydroxide [19] (Scheme 1). Moreover, an attempt to deprotect benzyloxy derivative 6 led to the
benzyl group migration to the N-2 position, yielding amide 7 along with the deprotected thiadiazine
8′ [20] (Scheme 1).
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2. Results and Discussion

The above reactions showing the displacement of the C-5 chloride of dichlorothiadiazinone
4 with hydroxide [19], or other oxygen nucleophiles [15], prompted us to investigate the use of
sulfide as a nucleophile that could afford the desired thiadiazine–thioamide. It is worthy of note that
3-chloro-1,2,6-thiadiazines are prone to ring-opening reactions in the presence of thiophilic reagents
such as phosphines, halides and nucleophilic sulfur [15].

We chose 3-chloro-5-methoxy-4H-1,2,6-thiadiazin-4-one (9) as the starting material, as the electron
donating ability of the methoxy group should make the ring sulfur less prone to thiophilic attack,
while the methoxy group also acted as a protecting group to avoid the formation of oligomers or
polymers. Methoxy-substituted thiadiazines can readily be transformed to analogous triflates [20].
In our efforts, we failed to obtain the desired thioamide; however, from the reaction of thiadiazine 9
with Na2S in THF at ca. 20 ◦C, we isolated 5,5′-thiobis(3-methoxy-4H-1,2,6-thiadiazin-4-one) (10) as the
only product in a 44% yield (Scheme 2, see Supplementary Materials for NMR spectra). This compound
represents the first non-S-oxidized bis-1,2,6-thiadiazine sulfide. Moreover, compound 10 itself is a new
chemotype with potential value in the medicinal chemistry sector. Several drugs contain heterocyclic
sulfide moieties; e.g., the immunosuppressive Azathioprine.
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This study shows that thiadiazine sulfides can be readily synthesized, which can open up the
investigation of their chemistry and properties.

3. Materials and Methods

The reaction mixture was monitored by thin layer chromatography (TLC) using commercial
glass-backed TLC plates (Merck Kieselgel 60 F254). The plates were observed under UV light at 254
and 365 nm. Tetrahydrofuran (THF) was distilled over CaH2 before use. The melting point was
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determined using a PolyTherm-A, Wagner & Munz, Kofler–Hotstage Microscope apparatus (Wagner
& Munz, Munich, Germany). The solvent used for recrystallization is indicated after the melting
point. The UV-vis spectrum was obtained using a Perkin-Elmer Lambda-25 UV-vis spectrophotometer
(Perkin-Elmer, Waltham, MA, USA) and inflections are identified by the abbreviation “inf”. The IR
spectrum was recorded on a Shimadzu FTIR-NIR Prestige-21 spectrometer (Shimadzu, Kyoto, Japan)
with the Pike Miracle Ge ATR accessory (Pike Miracle, Madison, WI, USA) and strong, medium and
weak peaks are represented by s, m and w, respectively. 1H and 13C NMR spectra were recorded
on a Bruker Avance 500 machine (at 500 and 125 MHz, respectively (Bruker, Billerica, MA, USA)).
Deuterated solvents were used for homonuclear lock and the signals are referenced to the deuterated
solvent peaks. Attached proton test (APT) NMR studies identified carbon multiplicities, which are
indicated by (s), (d), (t) and (q) notations. The MALDI-TOF mass spectrum (+ve mode) was recorded on
a Bruker Autoflex III Smartbeam instrument (Bruker). The elemental analysis was run by the London
Metropolitan University Elemental Analysis Service. 3-chloro-5-methoxy-4H-1,2,6-thiadiazin-4-one (9)
was prepared according to the procedure in the literature [21].

5,5′-Thiobis(3-methoxy-4H-1,2,6-thiadiazin-4-one) (10)

One portion of Na2S·9H2O (60.1 mg, 0.25 mmol) was added to a stirred mixture of 3-chloro-5-
methoxy-4H-1,2,6-thiadiazin-4-one (9) (89.3 mg, 0.500 mmol) in THF (5 mL) at ca. 20 ◦C. The mixture
was protected with a CaCl2 drying tube and stirred at this temperature until the complete consumption
of the starting material (TLC, 20 h). Dichloromethane (DCM, 10 mL) was then added and the mixture
adsorbed onto silica, and chromatography (n-hexane/t-BuOMe 50:50) gave the title compound 10
(35 mg, 44%) as yellow needles, mp 147–149 ◦C (from c-hexane); Rf 0.25 (n-hexane/t-BuOMe, 50:50);
(found: C, 30.26; H, 1.92; N, 17.71. C8H6N4O4S3 requires C, 30.18; H, 1.90; N, 17.60%); λmax(DCM)/nm
304 (log ε 4.15), 362 (4.24); vmax/cm−1 2936 w (C-H), 1659 m, 1624 s, 1541 m, 1520 m, 1481 w, 1456 w,
1443 w, 1339 s, 1227 m, 1217 m, 1204 m, 1078 w, 991 s, 949 m, 914 w, 870 w, 833 m, 800 m, 791 m;
δH(500 MHz; CDCl3) 4.00 (3H, s, OCH3); δC(125 MHz; CDCl3) 158.9 (s), 156.1 (s), 155.0 (s), 55.0 (q);
m/z (MALDI-TOF) 319 (MH+, 100%), 318 (M+, 22), 301 (59), 286 (57), 273 (42), 261 (49), 232 (48), 212 (67),
143 (48).

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-8599/2019/2/M1064/s1,
mol file, 1H and 13C NMR spectra.
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