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Abstract: The title salt, [(C6H11)2NH2][(C6H5O)2P(O)(O)], crystallizes in the chiral space group
P212121, composed of achiral cation and anion components. The strong charge-assisted N–H . . . O
hydrogen bonds build a linear assembly along the a axis, including a non-centrosymmetric C2

2(6)
chain graph-set motif. The intra and intermolecular C–H . . . O interactions as well as the C–H . . .
π-electron ring interactions also exist in the crystal structure. Fingerprint plots are used for a detailed
investigation of intermolecular interactions participating in the crystal packing. The spectroscopic
features (IR, 1H NMR, 13C{1H} NMR, 31P{1H} NMR, and mass) are studied.

Keywords: phosphate; X-ray structure analysis; chiral space group; charge-assisted hydrogen
bond; NMR

1. Introduction

The charge-assisted hydrogen bonds were observed in some cation–anion compounds including
phosphorus–oxygen-based anions. Typical examples are the [(Cl)2P(O)(O)]− anion and also the anions
with the (S)(O)P(O)(O), (C)2P(O)(O), (C)(N)P(O)(O), and (O)P(O)(S)(S) skeletons [1–4]. The Cambridge
Structural Database (CSD) survey was investigated to compare the hydrogen bond strengths in some
phosphate-based classes of salts and neutral closely related structures [4].

The chiral crystal structures from chiral or achiral molecules/components were also studied, and
the diversity of hydrogen bond motifs was investigated [5–7].

In this article, the chiral crystal structure [(C6H11)2NH2][(C6H5O)2P(O)(O)], including achiral
components, is investigated, and the synergistic cooperation of N–H . . . O, C–H . . . O, and C–H
. . . π interactions in the crystal packing is discussed. The synthesis procedure and spectroscopic
characterization of the title compound are detailed. A comparison of the cation and anion components
of the title salt with the structures including similar components from the CSD is presented.

Molbank 2019, 2019, M1051; doi:10.3390/M1051 www.mdpi.com/journal/molbank

http://www.mdpi.com/journal/molbank
http://www.mdpi.com
https://orcid.org/0000-0002-3377-3048
http://dx.doi.org/10.3390/M1051
http://www.mdpi.com/journal/molbank
https://www.mdpi.com/1422-8599/2019/1/M1051?type=check_update&version=2


Molbank 2019, 2019, M1051 2 of 13

2. Results and Discussion

2.1. Structure Description

The title compound crystallizes in the orthorhombic system with chiral space group P212121, and
the asymmetric unit is composed of one cation and one anion components (Figure 1). Selected bond
distances and angles are given in Table 1. In general, all bond distances are within the characteristic
values according to the atoms involved and are in the ranges of similar bonds observed in analogous
structures. For example, the phosphorus–oxygen bond lengths of the [P(O)(O)]− segment are 1.469(2)
and 1.459(2) Å, which are slightly more than the typical P=O bond length (1.45 Å) [8].
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O1–P1–O4 109.86(12) C13–N1–C19 118.1(2) 
O2–P1–O4 110.05(15) C2–C1–O4 115.1(3) 

In the cation, the cyclohexyl rings adopt a chair conformation, and the NH2 unit is situated in 
the equatorial position with respect to the rings. The large C–N–C angle, of 118.1(2)°, is a result of the 
steric bulk of the cyclohexyl rings, as has been also observed in the structures with the same cation, 
typically in [(C6H11)2NH2][C6H5PO2(OH)] (with CSD refcode ZARGOQ and the C–N–C angle of 
118.80(10)°) [9]. 

In the anion, the phosphorus atom has a distorted tetrahedral (O)2P(O)(O) environment, with 
the bond angles within 96.31(11)° and 119.96(12)°. These extreme values correspond to the O3–P1–
O4 and O2–P1–O1 angles, respectively (O1 and O2 are the atoms in the [P(O)(O)]− segment; O3 and 
O4 are the ester oxygen atoms). Similar trends of O–P–O angles were observed in structures with 
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Figure 1. The structure of [(C6H11)2NH2][(C6H5O)2P(O)(O)], showing the atom-numbering scheme
for non-hydrogen atoms and displacement ellipsoids at the 50% probability level. Hydrogen atoms are
drawn as spheres of arbitrary radii.

Table 1. Selected bond distances (Å) and angles (◦).

Bond Distances

O1–P1 1.469(2) C1–O4 1.382(3)
P1–O2 1.459(2) C7–O3 1.374(3)
O3–P1 1.602(2) C13–N1 1.499(4)
O4–P1 1.623(2) C19–N1 1.506(4)

Angles

O2–P1–O1 119.96(12) O3–P1–O4 96.31(11)
O1–P1–O3 106.78(12) C7–O3–P1 126.80(18)
O2–P1–O3 111.27(13) C1–O4–P1 124.5(2)
O1–P1–O4 109.86(12) C13–N1–C19 118.1(2)
O2–P1–O4 110.05(15) C2–C1–O4 115.1(3)

In the cation, the cyclohexyl rings adopt a chair conformation, and the NH2 unit is situated in
the equatorial position with respect to the rings. The large C–N–C angle, of 118.1(2)◦, is a result of the
steric bulk of the cyclohexyl rings, as has been also observed in the structures with the same cation,
typically in [(C6H11)2NH2][C6H5PO2(OH)] (with CSD refcode ZARGOQ and the C–N–C angle of
118.80(10)◦) [9].

In the anion, the phosphorus atom has a distorted tetrahedral (O)2P(O)(O) environment, with
the bond angles within 96.31(11)◦ and 119.96(12)◦. These extreme values correspond to the O3–P1–O4
and O2–P1–O1 angles, respectively (O1 and O2 are the atoms in the [P(O)(O)]− segment; O3 and
O4 are the ester oxygen atoms). Similar trends of O–P–O angles were observed in structures with
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[(C6H5O)2P(O)(O)]− anion, like for example the structures with the CSD refcodes PABMUA and
PABNAH [10]. The P–O–C angles of 124.5(2)◦ and 126.80(18)◦ show a few more “s” characters with
respect to the sp2 hybridization. These values in the anion with a (C-O)2(O)P(O) core are in accordance
with the previously reported P–O–C angles, typically in the (C-O)2P(X)(N)-based structures (X = O,
S) [3] deposited in the CSD. The similarities and differences of cations and anions in the title structure
with the selected related structures in the CSD are compared and discussed in Section 2.2.

In the crystal structure of the title compound, the cations and anions are hydrogen-bonded to each
other, through N–H . . . O hydrogen bonds (N1 . . . O1 = 2.806(3) Å and N1 . . . O2 = 2.730(3) Å),
building a linear arrangement along the a axis (Figure 2, Table 2). This assembly includes the
non-centrosymmetric C2

2(6) graph-set motif. The strength of N–H . . . O hydrogen bonds is a result of
the assistance of positive and negative charges in hydrogen bonding interactions.
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Figure 2. A view of the one-dimensional array of the title cation–anion compound built from N–H
. . . O hydrogen bonds. Color keys are red O, orange P, dark blue N; the C atoms of cation and anion
components are shown as green and blue colors, respectively. The carbon-bonded hydrogen atoms
were omitted for the sake of clarity, and the hydrogen bonds are shown as dashed lines.

Table 2. Hydrogen bond geometries (e.s.d.s are given in parentheses).

D–H . . . A D–H (Å) H . . . A (Å) D . . . A (Å) ∠∠∠D–H . . . A (◦)

N1–HN1B . . . O1#1 0.83(3) 1.97(3) 2.806(3) 177(3)
N1–HN1A . . . O2#2 0.90(3) 1.84(3) 2.730(3) 176(3)

C12–H12 . . . O4 0.93 2.62 3.139(4) 115.8
C24–H24B . . . O2#1 0.97 2.65 3.548(4) 154.9
C11–H11 . . . Cg1#3 0.93 2.80 3.629(3) 149

C15–H15B . . . Cg1#4 0.97 2.97 3.664(4) 130
C15–H15A . . . Cg2#4 0.97 2.95 3.765(4) 142

Symmetry codes: #1 x − 1/2, −y + 1/2, −z + 2; #2 x − 1, y, z; #3 −x + 2, y + 1/2, −z + 3/2; #4 −x + 1, y − 1/2, −z
+ 3/2.

In addition, the crystal packing shows one weak intermolecular C–H . . . O hydrogen bond (C24
. . . O2 = 3.548(4) Å), and one intramolecular C–H . . . O hydrogen bond (C12 . . . O4 = 3.139(4) Å)
(Table 2). The C–H . . . O interactions do not extend the dimensionality of hydrogen bond pattern
made by N–H . . . O hydrogen bonds. Figure 3 indicates a view of crystal packing with the relevant
N–H . . . O and C–H . . . O hydrogen bonds. This assembly includes an R2

2(8) hydrogen-bonded ring
motif, made by the cooperation of N1–HN1B . . . O1 and C24–H24B . . . O2 hydrogen bonds. The two
phenyl rings of the anion also involved in the C–H . . . π-electron ring interactions, as the acceptors;
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the geometries are given in Table 2. The C–H . . . π interactions network is also formed along the a axis
(Figure 4). In all contacts noted, the acceptor sites (O, π) belong to the anion.Molbank 2019, 2019, 1051 4 of 13 
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the title compound. Fourteen structures (CSD REFCODES: CADGUJ [11], EFUMEX [12], GAGQOV 
[13], HAXRAZ [14], JOXMAK [15], LOKGUN [16], OBOTOQ [17], TEDFIR [18], WILKOR [19], 
YIWXOR [20], ZALTEL [21], ZALTIP [21], ZARGOQ [9], and ZETHIP [2]) containing the cation 
“dicyclohexylammonium” moiety were retrieved from the CSD. The bond lengths (Supplementary 
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Figure 3. The molecular interactions of [(C6H11)2NH2][(C6H5O)2P(O)(O)] viewed along the b direction.
Intra and intermolecular C–H . . . O interactions are shown along with the strong N–H . . . O
intermolecular interactions. Hydrogen atoms not involved in the interactions are omitted for the
sake of clarity, and the hydrogen bonds are shown as dashed lines. Color keys are red O, orange
P, blue N; the C atoms of cation and anion components are shown as gold-orange and light blue
colors, respectively.
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Figure 4. The C–H . . . π interactions of [(C6H11)2NH2][(C6H5O)2P(O)(O)] viewed along the b direction.
Only the hydrogen atoms participating in C–H . . . π interactions are shown, and the C–H . . . π

interactions are represented by dashed lines. Color keys are red O, orange P, blue N, gray C, and yellow
for centroid of the phenyl ring.

2.2. Structural Comparison

CSD study has been carried out to understand the similarities and conformational changes
of the title compound. Fourteen structures (CSD REFCODES: CADGUJ [11], EFUMEX [12],
GAGQOV [13], HAXRAZ [14], JOXMAK [15], LOKGUN [16], OBOTOQ [17], TEDFIR [18],
WILKOR [19], YIWXOR [20], ZALTEL [21], ZALTIP [21], ZARGOQ [9], and ZETHIP [2]) containing
the cation “dicyclohexylammonium” moiety were retrieved from the CSD. The bond lengths
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(Supplementary Table S1, Figure 5A), selected bond angles (Supplementary Table S2, Figure 5B), and
selected torsion angles C14–C13–N1–C19 and C24–C19–N1–C13 (Supplementary Table S3, Figure 6)
of the cation component are compared with the literature. From the results, it is evident that the
bond lengths of dicyclohexylammonium moiety of the title compound are well-matched with the
reported literature values (Figure 5A). The bond angles C13–N1–C19 (118.1◦), C14–C13–N1 (111.2◦),
C18–C13–N1 (108.0◦), C20–C19–N1 (107.1◦), and C24–C19–N1 (112.3◦) match the average bond angles
calculated from the literature data as well (Figure 5B).
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than one model in the asymmetric unit are marked as Mol1, Mol2, etc. The figure is rendered using 
PyMOL [22]. 

The conformational changes of the two cyclohexyl rings are compared with the structures 
retrieved from the CSD and superimposed with the cation moiety of the title compound. The 
structures were superimposed with one of the cyclohexyl rings including the nitrogen atom (N1–
C19–C20–C21–C22–C23–C24) as shown in Figure 6. Two significant conformational flexibilities were 
observed among these structures. The cation moiety of the title compound adopts a –sc (synclinal) 
conformation with the torsion angles C14–C13–N1–C19 and C24–C19–N1–C13 of −61.1(3)° and –
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the dicyclohexylammonium moiety are shown with the average literature values extracted from
the Cambridge Structural Database (CSD). (B) Selected bond angles of the cation moiety of the title
compound are marked with the literature values. The bond lengths and angles of the title compound
are shown in boldface and the average bond lengths, and bond angles calculated from the 14 model
structures extracted from the CSD are shown in normal italic.
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Figure 6. Conformational flexibility of cyclohexyl rings. The cation moiety of the title compound is
shown in a ball-and-stick model, and carbon atoms are colored green. The remaining structures are
shown in a simple line model. Molecules are marked using CSD REFCODES and molecules with more
than one model in the asymmetric unit are marked as Mol1, Mol2, etc. The figure is rendered using
PyMOL [22].

The conformational changes of the two cyclohexyl rings are compared with the structures
retrieved from the CSD and superimposed with the cation moiety of the title compound. The
structures were superimposed with one of the cyclohexyl rings including the nitrogen atom
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(N1–C19–C20–C21–C22–C23–C24) as shown in Figure 6. Two significant conformational flexibilities
were observed among these structures. The cation moiety of the title compound adopts a −sc (synclinal)
conformation with the torsion angles C14–C13–N1–C19 and C24–C19–N1–C13 of −61.1(3)◦ and
−53.9(3)◦, respectively, which bear a resemblance to the average literature values (Supplementary
Table S3, and Figure 6). Ten molecules arising from the eight structures CADGUJ (Molecules 1 and 2),
GAGQOV (Molecule 1), LOKGUN, YIWXOR, ZALTEL (Molecule 1), ZARGOQ, ZALTIP (Molecules 2
and 4), and ZETHIP (Molecule 1) adopt similar conformation as the title compound while remaining
structures adopt +synclinal conformation. The distance of rings between the two groups is found to be
~3.0 Å with an approximate angle of 97◦ (Figure 6).

The bond lengths excluding the two phenyl rings, selected bond angles, and torsion angles
representing Ph-O parts of the anion moiety of the title compound were compared with the reported
structures extracted from the CSD. The 12 model structures (CSD REFCODES: CUVMUB [23],
DUWWEX [24], ETADIM [25], FAGLEE [26], FAWYOR [27], HUHTEJ [28], OFESID [29], PABMUA [10],
PABNAH [10], RUXWOY [30], VOVCOY [31], and ZOXVEN [32]) containing anion “diphenyl
phosphate” were retrieved from the CSD. Figure 7 shows the distances of the C–O (C1–O4, C7–O3),
P–OPh (P1–O3, P1–O4), P–O (non-ester; P1–O1, P1–O2) (Supplementary Table S4), and O–P–O bond
angles with the reported literature values. The bond lengths and bond angles that correspond to
phosphate geometry are favorably comparable with the reported literature.
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of these molecules with the title compound shows that FAGLEE (Molecule 1) is very close to the title 
compound, and the remaining molecules in this group are slightly deviated and clustered together, 
except ZOXVEN (Molecule 1). While one of the phenyl rings of the ZOXVEN adopts skew (–sc) 
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Figure 7. Structural comparison of the anion moiety, diphenyl phosphate, of the title compound.
(A) Bond lengths of the diphenyl phosphate moiety, except for two phenyl rings, are shown and
compared with the literature values extracted from the CSD. (B) Selected bond angles of the anion
moiety of the title compound are marked with the literature values. The bond lengths and angles of the
title compound are shown in boldface and the average bond lengths, and bond angles calculated from
the 12 model structures extracted from the CSD, are shown in normal italic.

The torsion angles C7–O3–P1–O4 (−72.5◦), and C1–O4–P1–O3 (−163.3◦) of the diphenyl
phosphate moiety of the title compound represent –synclinal and –antiperiplanar conformations,
respectively. Superposition of the structures extracted from CSD with the anion moiety of the title
compound based on O3–P1–O4 atoms shows two significant conformational flexibilities (Figure 8A).
While the torsion angles representing C7–O3–P1–O4 of the entire structures show either −sc or
+sc conformation, the torsion angles for C1–O4–P1–O3 show ±ap, ±sc, and ±ac conformations
(Supplementary Table S6). The torsional angles of C7–O3–P1–O4 in the six CSD structures FAGLEE
(Molecules 1 and 4), CUVMUB, FAWYOR (Molecule 2), PABMUA, RUXWOY, and ZOXVEN
(Molecule 1) including the title compound adopt –synclinal conformation (Figure 8B). Superposition
of these molecules with the title compound shows that FAGLEE (Molecule 1) is very close to the
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title compound, and the remaining molecules in this group are slightly deviated and clustered
together, except ZOXVEN (Molecule 1). While one of the phenyl rings of the ZOXVEN adopts
skew (–sc) conformation, the other one adopts trans (+ap) conformation. Thus, one of the phenyl
rings of the ZOXVEN remarkably deviates from the other structures in this group (Figure 8B). The
remaining molecules FAGLEE (Molecules 2 and 3), DUWWEX, ETADIM, HUHTEJ, OFESID, FAWYOR
(Molecule 1), VOVCOY, PABNAH, and ZOXVEN (Molecule 2) are clustered into other groups based on
the C7–O3–P1–O4 torsion angle (+sc) conformation (Figure 8C, Supplementary Table S6). In this group,
ETADIM, FAGLEE (Molecule 2), HUHTEJ, OFESID, FAWYOR (Molecule 1), and VOVCOY molecules
adopt similar conformation (+sc), Figure 8B, and the DUWWEX molecule adopts +ac conformation.
The FAGLEE (Molecule 3) adopts +ap conformation, PABNAH, and ZOXVEN (Molecule 2) molecules
both adopt –ac conformation, and these three structures are slightly deviating from other structures in
this cluster (Figure 8C).
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Figure 8. Structural comparison of diphenyl phosphate moiety of the title compound with the literature.
(A) Superposition of diphenyl phosphate moieties extracted from the CSD with the title compound.
The title compound is shown in yellow (carbon atoms), ball-and-stick model. Based on the torsional
angle C7–O3–P1–O4, two major conformational flexibilities −sc and +sc were observed. The models
representing −sc group are shown in (B), and the models that adopt +sc are shown in (C). The deviating
models in both groups are marked.

Thus, comparison of the cation and anion moieties of the title compound with the similar structures
available in the CSD indicates that the title compound is well-matched with the reported literature.

2.3. Hirshfeld Surface Analysis and Fingerprint Plots

The Hirshfeld surface analysis, which uses three-dimensional (3D) surfaces functions, as well
as two-dimensional (2D) fingerprint plots [33,34], is a very useful graphical tool for identification
and understanding of intermolecular interactions within a crystal structure. The Hirshfeld surfaces
mapped with dnorm and corresponding shape index associated 2D fingerprint plots of the cation and
anion of the title structure were generated using the Crystal Explorer software version 3.1 [35], with the
structure file in the CIF format as the input.

In the Hirshfeld surfaces of the cation and anion, two large red areas can be seen, which correspond
to two intermolecular N–H···O hydrogen bonds, as noted in the crystal structure section. The Hirshfeld
surface map is typically represented for the anion and labels 1 and 2 denote to the hydrogen bonds
noted (Figure 9); the Hirshfeld surface of the cation represents similar red areas with the hydrogen-bond
donor sites, i.e., NH units, within the surface.

Two-dimensional fingerprint plots of the cation and anion are derived from the Hirshfeld surfaces,
by plotting the fraction of points on the surface as a function of (de, di), where de and di introduce the
distances from a point on the Hirshfeld surface to the nearest atoms outside and inside the surface,
respectively. The full fingerprint plots of the cation and anion are given in Figure 10. The full plots
were also divided into the figures illustrating different contacts observed in the crystal (Figure 11).
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Figure 9. A view of the Hirshfeld surface map of the [(C6H5O)2P(O)(O)]− anion. The interactions
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N1–HN1A . . . O2 (2). The ball-and-stick models of the anion and two hydrogen-bonded cations are
given inside and outside the surface, respectively.
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According to divided fingerprints, the contribution portions of contacts received by the cation
are H···H 72.7%, H···O 13.7%, and H···C 13.5%. Similar contacts in the anion have the contribution
portions of 54.2%, 22.9%, and 22.8%, respectively. Furthermore, a minor P···H contact is also seen for
the anion with the contribution portion of 0.1%. In the fingerprint plots, the H···O contacts develop as
one sharp spike, indicating the closest interaction in the crystal.

2.4. Spectroscopic Study

In the IR spectrum of the title salt, the intense doublet band with the maxima at 1239 and 1224 cm−1

is assigned to phosphorus–oxygen stretches of the [P=O(O)]− moiety. The broad overlapped bands
within 2471 to 3016 cm−1 are assigned to NH stretching frequencies, aliphatic and aromatic CH
stretching frequencies, and the overtone of stretching frequencies of the phosphorus–oxygen bonds
in the [P=O(O)]− moiety. The broadening of these overlapped bands is related to strong N–H . . . O
hydrogen bonds as were discussed in the X-ray description.

The 31P signal appears at −12.70 ppm, in comparison with the values of −11.7 ppm in the
cation–anion compound [3-Cl-C6H4NH3][(C6H5O)2P(O)(O)] [30] and −0.81 ppm in the neutral
compound (C6H5O)2((C6H5)(CH3)CHNH)P(O) [36]. The relatively high negative value is attributed to
shielding caused by the negative charge on the oxygen atom. In the 1H NMR, the signal at 8.80 ppm
corresponds to the NH2 protons, and the downfield chemical shift is due to the hydrogen bonding
effect, similar to the one that was reported for a compound exhibiting hydrogen bonding in the X-ray
structure [37]. The aliphatic and aromatic protons appear within 1.01 to 2.97 ppm and 7.02 to 7.28 ppm,
as expected. In the 13C NMR spectrum, the doublet signals at 153.87 (2JPC = 7.0 Hz) and 120.34 ppm
(3JPC = 5.1 Hz) are related to the ipso- and ortho- carbon atoms of C6H5 ring. The other six signals
are singlet.
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The mass spectrum indicates the peaks at m/z = 248, 247, 182, and 180, respectively attributed to
the cations with formulas of [(C6H5O)2P(O)(O) − H]+, [(C6H5O)2P(O)(O) − 2H]+, [(C6H11)2NH2]+,
and [(C6H11)2N]+.
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2.4. Spectroscopic Study 

In the IR spectrum of the title salt, the intense doublet band with the maxima at 1239 and 1224 
cm−1 is assigned to phosphorus–oxygen stretches of the [P=O(O)]− moiety. The broad overlapped 
bands within 2471 to 3016 cm−1 are assigned to NH stretching frequencies, aliphatic and aromatic CH 
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in the [P=O(O)]− moiety. The broadening of these overlapped bands is related to strong N–H…O 
hydrogen bonds as were discussed in the X-ray description. 

The 31P signal appears at −12.70 ppm, in comparison with the values of −11.7 ppm in the cation–
anion compound [3-Cl-C6H4NH3][(C6H5O)2P(O)(O)] [30] and −0.81 ppm in the neutral compound 
(C6H5O)2((C6H5)(CH3)CHNH)P(O) [36]. The relatively high negative value is attributed to shielding 
caused by the negative charge on the oxygen atom. In the 1H NMR, the signal at 8.80 ppm corresponds 
to the NH2 protons, and the downfield chemical shift is due to the hydrogen bonding effect, similar 
to the one that was reported for a compound exhibiting hydrogen bonding in the X-ray structure [37]. 
The aliphatic and aromatic protons appear within 1.01 to 2.97 ppm and 7.02 to 7.28 ppm, as expected. 
In the 13C NMR spectrum, the doublet signals at 153.87 (2JPC = 7.0 Hz) and 120.34 ppm (3JPC = 5.1 Hz) 
are related to the ipso- and ortho- carbon atoms of C6H5 ring. The other six signals are singlet.  
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chloride (1 mmol) in the same solvent (at 273 K) under stirring. After 4 h, the mixture was transferred 
to a beaker in order to evaporate the solvent at room temperature over the course of a few days. The 
solid which formed was washed with distilled water and dried. Single crystals (yellow needles) were 
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C24H34NO4P: C, 66.80; H, 7.94; N, 3.25. Found: C, 66.57; H, 7.90; N, 3.27. 1H NMR (DMSO-d6, 300.8 
MHz): δ 8.80 (s, 2H, NH), 7.28 (apparent-t, J = 7.7 Hz, 4H), 7.16 (d, J = 7.8 Hz, 4H), 7.02 (t, J = 7.2 Hz, 
2H), 2.97 (m, 2H), 1.01–1.97 (m, 20H). 13C{1H} NMR (DMSO-d6, 75.6 MHz): δ 153.87 (d, J = 7.0 Hz), 

Figure 11. Divided fingerprint plots for the cation and anion components of the title salt: H . . . H of
cation (A), H . . . H of anion (B), H . . . O of cation (C), H . . . O of anion (D), H . . . C of cation (E) and
H . . . C of anion (F).

3. Materials and Methods

3.1. Synthesis of [(C6H11)2NH2][(C6H5O)2P(O)(O)]

General procedure for the preparation of some dicyclohexylammonium di(para-substituted
phenyl) phosphates was reported, together with the melting points and elemental analyses of different
derivatives such as the title salt, i.e., with the para-substituent H [38]. The synthesis method was
based on the reaction of N-methylpyridinium di(para-substituted phenyl phosphates) with HCl and
dicyclohexylamine. The title salt reported in this article is the product obtained from hydrolysis in
the synthesis process in a different reaction condition, as follows. A solution of dicyclohexylamine
(1 mmol) and triethylamine (1 mmol) in acetonitrile was added to a solution of diphenylphosphoryl
chloride (1 mmol) in the same solvent (at 273 K) under stirring. After 4 h, the mixture was transferred
to a beaker in order to evaporate the solvent at room temperature over the course of a few days.
The solid which formed was washed with distilled water and dried. Single crystals (yellow needles)
were obtained from a solution of the product in a methanol–acetonitrile (1:1 v/v) mixture at room
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temperature. Yield: 80%. Mp: 188 ◦C (decomp.) (in literature: 188 to 189.5 ◦C [38]). Anal. Calc. for
C24H34NO4P: C, 66.80; H, 7.94; N, 3.25. Found: C, 66.57; H, 7.90; N, 3.27. 1H NMR (DMSO-d6, 300.8
MHz): δ 8.80 (s, 2H, NH), 7.28 (apparent-t, J = 7.7 Hz, 4H), 7.16 (d, J = 7.8 Hz, 4H), 7.02 (t, J = 7.2 Hz,
2H), 2.97 (m, 2H), 1.01–1.97 (m, 20H). 13C{1H} NMR (DMSO-d6, 75.6 MHz): δ 153.87 (d, J = 7.0 Hz),
129.46, 122.82, 120.34 (d, J = 5.1 Hz), 52.24, 28.84, 25.25, 24.48. 31P{1H} NMR (DMSO-d6, 121.8 MHz): δ
−12.70. IR (cm−1): 3016, 2934, 2859, 2760, 2669, 2564, 2471, 1595, 1495, 1458, 1389, 1239, 1224, 1166,
1096, 1032, 894, 754, 687. MS (70 eV, EI): 248 (4) [(C6H5O)2P(O)(O) − H]+, 247 (5) [(C6H5O)2P(O)(O)−
2H]+, 182 (13) [(C6H11)2NH2]+, 180 (76) [(C6H11)2N]+, 137 (100) [C9H15N]+, 99 (47) [C6H13N]+, 82
(76) [C6H10]+.

3.2. X-ray Data of Crystal Structure

The X-ray data were collected at 293 K with graphite monochromated Mo Kα radiation
(0.71073 Å) on a Bruker SMART APEXII area-detector diffractometer. The structure was solved
with SHELXS97 [39] by the direct methods algorithm and refined using full-matrix least-squares on
F2 with the SHELXL-2016/6 [40]. All carbon-bound H atoms were placed at calculated positions and
were refined on their parent atoms with their Uiso set to 1.2Ueq. Nitrogen-bound H atoms were located
in a difference Fourier map and refined isotropically with their Uiso set to 1.2Ueq of the carrier N atom.

The crystallographic data for C12H10O4P.C12H24N (M = 431.49 g/mol): Orthorhombic, space
group P212121, a = 9.6610(4) Å, b = 10.9649(5) Å, c = 21.8524(11) Å, V = 2314.87(18) Å3, Z = 4, T = 293(2) K,
F(000) = 928, µ(MoKα) = 0.148 mm−1, S = 1.041, Dcalc = 1.238 g/cm3, 5598 independent reflections,
−12 ≤ h ≤ 11, −14 ≤ k ≤ 9, −28 ≤ l ≤ 28, 4466 reflections with I > 2σ(I), Rint = 0.0289. The final
R1 was 0.0453 (F2 > 2σ(F2)) and wR2 (F2) was 0.1122, ∆ρmax (eÅ−3) = 0.543, ∆ρmin (eÅ−3) = −0.226.
The molecular graphics were generated by Mercury [41] and OLEX2 [42]. Crystallographic data
have been deposited with Cambridge Crystallographic Data Centre (CCDC-1887337). These data
can be obtained free of charge [43] from the CCDC, 12 Union Road, Cambridge CB2 1EZ, UK; fax:
+44-1223-336033; e-mail: deposit@ccdc.cam.ac.uk.

4. Conclusions

The [(C6H11)2NH2][(C6H5O)2P(O)(O)] salt crystallizes in the chiral space group P212121, and
the cation and anion components are assembled through relatively strong charge-assisted N–H . . . O
hydrogen bonds, together with C–H . . . O and C–H . . . π weak interactions. The divided fingerprints
show the most contribution portions of H . . . H contacts and then H . . . O and H . . . C interactions
received by both cation and anion. The negative 31P signal in solution NMR is attributed to shielding
caused by the negative charge on the oxygen atom. The cation and anion components of the title salt
are well-matched with the structures including similar components from the CSD.

Supplementary Materials: The tables for structural comparisons with CSD, and 31P{1H} NMR, 1H NMR, 13C{1H}
NMR, IR, Mass, and crystallographic data of synthesized compound are available online at http://www.mdpi.
com/1422-8599/2019/1/M1051/s1.
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