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Abstract: N′-(4-Methoxybenzylidene)-5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide (3) was
synthesized in a yield of 88% from an acid-catalyzed reaction of 5-methyl-1-phenyl-1H-1,2,3-
triazole-4-carbohydrazide and 4-methoxybenzaldehyde in ethanol under reflux for 2.5 h. The structure of
3 was confirmed by the data obtained from infrared, nuclear magnetic resonance, mass spectroscopy,
single crystal X-ray diffraction, and microanalysis.

Keywords: 1,2,3-triazoles; carbohydrazides; single crystal X-ray diffraction; spectroscopic structural
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1. Introduction

Arylidene carbohydrazides are remarkable compounds because of their activity as antimicrobial,
analgesic, anti-inflammatory, antiproliferative, and antioxidant agents [1–5]. Another interesting group
of compounds is 1,2,3-triazoles, which may act as anticancer, antimicrobial, α-glucosidase inhibitors,
and cholinesterase inhibitor agents [6–9]. 1,2,3-Triazoles can be synthesized from reactions of azides
and calcium carbide, a source of acetylene, in a mixture of acetonitrile and water in the presence of
copper iodide [10]; nitroolefins and sodium azide in dimethylformamide in the presence of a catalyst
such as p-toluenesulfonic acid or Amberlyst-15 [11,12]; alkenyl halides and sodium azide in dioxane or
dimethyl sulfoxide in the presence of a palladium catalyst [13]; alkyl bromides and acetylenes in water
in the presence of bromotris(triphenylphosphine)copper(I) or copper(I) isonitrile [14,15]; and alkynoic
acids, aryl iodides, and azides in a mixture of dimethyl sulfoxide and water in the presence of
L-proline [16]. Our interest in the synthesis of arylidenes of 1,2,3-triazole emanates from ongoing
research in the area of heterocycles [17–22]. In this paper, the synthesis and structure elucidation of
N′-(4-methoxybenzylidene)-5-methyl-1-phenyl-1H- 1,2,3-triazole-4-carbohydrazide (3) are reported.
The synthesis and structure elucidation for similar compounds have been recently published [23].
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2. Results and Discussion

2.1. Synthesis of Compound 3

The condensation of 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide (1) and 4-methoxybenz-
aldehyde (2) in dry ethanol (EtOH) containing glacial acetic acid (AcOH) as a catalyst produced 3 in a
yield of 88% (Scheme 1). The chemical structure of 3 was confirmed by the data from microanalysis,
infrared (IR), nuclear magnetic resonance (NMR), mass spectroscopy (MS), and single crystal X-ray
diffraction (Figure 1).
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Figure 1. Oak Ridge Thermal Ellipsoid Plot (ORTEP) representation of the asymmetric unit for
compound 3 with ellipsoids displayed at the 50% probability level.

2.2. Spectroscopic Structural Analysis

The IR spectrum of 3 showed a strong absorption band at 1680 cm−1 (C=O) and a broad absorption
band at 3300 cm−1 (NH). The 1H-NMR spectrum of 3 showed an exchangeable singlet corresponding
to one proton (NH) that appeared at 12.03 ppm and a singlet that appeared at 8.52 ppm (–CH=N–).
It also showed the presence of two singlets each corresponding to three protons that appeared at
2.56 ppm (Me) and 3.80 ppm (OMe). The 13C-NMR spectrum of 3 showed the presence of all expected
signals. The carbonyl carbon appeared at 157.1 ppm and the –CH=N– carbon appeared at 147.9 ppm.
The methyl and methoxy carbons appeared at 9.4 and 55.3 ppm, respectively. The mass spectrum of
3 showed a molecular ion peak at m/z = 335 (2%) and a base peak at m/z = 84. See Supplementary
Materials for more details.

2.3. X-Ray Structures

The crystal structure of 3 comprises two crystallographically independent molecules (Figure 1).
A significant difference between the two independent molecules is the conformation of the
methoxy group as indicated by the corresponding torsion angle C1–O1–C2–C3 = 178.34(67)◦ and
C19–O3–C20–C21 = 6.14(66)◦. The combined methoxybenzylidene-carbohydrazide group (A) is
essentially planar in both molecules with maximum atomic deviations from the least-squares planes of
0.100(1) Å (for C1) and 0.162(1) Å (for O4) for the first molecule (C1–C18) and the second molecule
(C19–C36), respectively. The molecules are completed by methyltriazole (B) and phenyl (C) moieties.
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The twist angles between the planes through A and B, and through B and C are 6.94(18)◦ and 50.91(13)◦

for the first molecule and 12.62(19)◦ and 45.18(20)◦ for the second molecule.
In the crystal structure, the second type of molecule forms chains parallel to the c-axis through

N–H...O interactions with geometry: N7–H7A . . . O4a = 159.2◦ (a = x, −y + 2, z + 1
2 ) and N . . . O

= 3.289(6) Å (Figure 2). N–H . . . O contacts involving the first type of molecule are weaker (with
geometry N2–H2 . . . O2b = 141.6◦, N2 . . . O2 = 3.522(6) Å, b = x, −y + 1, z + 1

2 ) but are complemented
by C–H . . . O contacts (with geometry C8–H8 . . . O2b = 152.0◦, C8 . . . O2 = 3.289(6) Å) also forming
chains parallel to the c-axis.
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3. Materials and Method

3.1. General

An Electrothermal IA 9000 melting point apparatus was used to determine the melting point.
A FT-IT PerkinElmer Spectrum GX was used to record the IR spectrum (KBr disks). A JOEL-ECA
600 MHz was used to record the NMR spectra in deuterated dimethyl sulfoxide relative to the
tetramethylsilane at 600 MHz for 1H and 150 MHz for 13C measurements. The mass spectrum was
determined on a GCMS JEOL JMS-Q1050GC Ultra Quad GC/MS (70 eV).

3.2. Synthetic Procedure for Compound 3

A mixture of 5-methyl-1-phenyl-1H-1,2,3-triazole-4-carbohydrazide (0.43 g, 2.0 mmol),
4-methoxybenzaldehyde (0.27 g, 2.0 mmol), and glacial AcOH (0.1 mL) in dry EtOH (20 mL) was heated
under reflux for 2.5 h. The solid formed was collected by filtration, washed with EtOH, dried and
recrystallized from DMF. Mp 231–232 ◦C. IR(KBr) νmax/cm−1: 1600 (C=C), 1680 (C=O), 3300 (NH).
1H-NMR: δ 2.56 (s, 3H, Me), 3.80 (s, 3H, OMe), 7.02 (d, J = 8.4 Hz, 2H, Ar), 7.62–7.67 (m, 7H, Ar), 8.52 (s,
1H, CH=N), 12.03 (s, exchangeable, 1H, NH). 13C-NMR: δ 9.4 (Me), 55.3 (OMe), 114.4 (C-3/C-5 of Ar),
125.5 (C-2/C-6 of Ph), 127.0 (C-1 of Ar), 128.7 (C-3/C-5 of Ph), 129.7 (C-2/C-6 of Ar), 130.1 (C-4 of Ph),
135.3 (C-4 of 1,2,3-triazolyl), 137.4 (C-1 of Ph), 137.8 (C-5 of 1,2,3-triazolyl), 147.9 (CH=N), 157.1 (C=O),
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160.8 (C-4 of Ar). MS (EI) m/z (%): 335 (M+, 2), 84 (100), 66 (96), 46 (94). Anal. Calcd. for C18H17N5O2

(335.14): C, 64.47; H, 5.11; N, 20.88. Found: C, 64.86; H, 5.18; N, 20.97%.
Crystal Data: C18H17N5O2 (M = 335.36 g/mol): monoclinic, space group Pc (no. 7), a = 18.4634(11)

Å, b = 12.0289(8) Å, c = 7.7553(5) Å, β= 101.401(6)◦,V = 1688.42(19) Å3, Z = 4, T = 296(2) K, µ(CuKα) =
0.735 mm−1, Dcalc = 1.319 Mg/m3, 16249 reflections measured (3.67◦ ≤ θ ≤ 74.30◦), 5379 unique (Rint
= 0.0527, Rsigma = 0.0502) which were used in all calculations. The final R1 was 0.0544 (I > 2σ(I)) and
wR2 was 0.1478 (all data).

Data Collection and Refinement Details: Diffraction data were collected on a Rigaku SuperNova
Dual Atlas diffractometer using mirror monochromated CuKα radiation (1.54184 Å). The structure
was solved by direct methods with SHELXS [24] and refined by full-matrix methods on F2 with
SHELXL-2014 [25]. All hydrogen atoms were placed in calculated positions and refined using a riding
model. Aromatic C–H distances were set to 0.93 Å and the Uiso(H) set to 1.2 times Ueq(C). Methyl C-H
distances were set to 0.96 Å and the Uiso(H) to 1.5 times Ueq(C) with the group allowed to rotate around
the C–C bond. Aromatic N–H distances were set to 0.86 Å and the Uiso(H) set to 1.2 times Ueq(N).
CCDC 1874941 contains the supplementary crystallographic data for this paper. These data can be
obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC,
12 Union Road, Cambridge CB2 1EZ, UK; Fax: +44-1223-336033; E-mail: deposit@ccdc.cam.ac.uk).

Supplementary Materials: The IR, 1H-NMR, 13C-NMR and mass spectra, and the checkCIF file for compound 3
are available online.
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