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Abstract: A new compound (E)-3-[3-(4-morpholinophenyl)acryloyl]-2H-chromen-2-one, a coumarin
based chalcone derivative, has been successfully synthesized employing a molecular hybridization
method through the reaction between 3-acetylcoumarin and 4-morpholinobenzaldehyde using
a Claisen–Schmidt reaction using pTSA as a catalyst. The structure of the title compound was
established using spectroscopic data FTIR, HRESI-MS, 1H- and 13C-NMR. The anticancer activity
against breast cancer cells line T47D and cervix cancer cells line HeLa was determined using an MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay.
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1. Introduction

Combining different pharmacophoric moieties from different bioactive compounds to generate a
new hybrid compound showing better affinity and efficacy, with fewer undesired side effects, than
the parent compounds becomes a new concept in drug design and development, which is known
as molecular hybridization [1]. An example of such hybridization is a compound constructed from
coumarin and chalcones. Coumarins are secondary metabolites possessing a benzopyran ring that
can also be found as synthetic products and are already known for their various pharmacological
activities such as antimycobacterial [2], inhibitor of HIV-1 [3], inhibitor of platelet aggregation,
and to smooth muscle contraction in vitro [4]. Meanwhile, chalcones (1,3-diaryl-2-propen-1-ones)
belong to the group of flavonoids, which can be obtained from a plant origin and from synthesis.
The bioactivities of chalcones are well known, such as cytotoxic agents against tumor cells [5],
along with being antimalarial [6,7], antibacterial [8,9], and anticancer [10]. The pharmacological
activities of coumarin–chalcone derivatives containing urea moiety as an anticancer agent has also
been reported [11].

Based on this consideration, we designed a coumarin–chalcone hybrid compound containing
morpholino-phenyl moiety and synthesized it successfully through a Claisen–Schmidt reaction.
Furthermore, the prepared compound was evaluated in relation to its anticancer activity against
breast cancer cell line T47D and cervix cancer cell line HeLa using an MTT assay.

2. Results and Dicussion

The title compound 5 was prepared using a two-step reaction. The first step was the synthesis
of 3-acetylcoumarin 3 from the reaction of 2-hydroxybenzaldehyde 1 with ethyl acetoacetate 2.
Compounds of the ketocoumarin type are usually synthesized from salicylaldehyde using a cyclic
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secondary amine piperidine [12]. However, in our experiment, we used triethyl amine, a tertiary
amine, as a catalyst.

Compound 3 was then reacted with 4-morpholinobenzaldehyde 4 to furnish the target molecule
5 employing a Claisen–Schmidt reaction. First, we conducted the synthesis of compound 5 using a
solution of KOH 40% as a catalyst as is generally used for aldol condensation. However, we did not
get the desired product. We assumed that KOH solution hydrolyzed the 3-acetylcoumarin. Then we
decided to use p-toluenesulfonic acid (pTSA) as a catalyst, and the reaction proceeded to give the
desired product. The reaction process is displayed in Figure 1.
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(E)-3-[3-(4-Morpholinophenyl)acryloyl]-2H-chromen-2-one: red needle crystal (0.88 g, 24%), Rf 0.58
(n-hexane:ethyl acetate 3:2), HRMS(ESI) [M + Na]+ for C22H19NO4 m/z = 384.1212 (calculated) and
384.1215 (observed); IR (DRS, KBr, cm−1): 3094 (C–H aromatic), 2855 (C–H aliphatic), 1724 (C=O
ketone), 1605 (C=C conjugated), 1572 (C=C aromatic), 1171 (C–O ether). 1H-NMR (400 MHz, CDCl3)
δH 8.57 (s, 1H), 7.85 (d, J = 15.6 Hz, 1H), 7.79 (d, J = 15.6 Hz, 1H), 7.66 (m, 2H), 7.61 (d, J = 8.9 Hz, 2H),
7.39 (d, J = 8.3 Hz, 1H), 7.34 (t, J = 7.6 Hz, 1H), 6.89 (d, J = 8.9 Hz, 2H), 3.86 (t, J = 5.3 Hz, 4H), 3.28
(t, J = 5.3 Hz, 4H). 13C-NMR (101 MHz, CDCl3) δC 186.3 (C), 159.6 (C), 155.3 (C), 153.0 (C), 147.8 (CH),
145.6 (CH), 134.1 (CH), 130.9 (CH), 130.1 (CH), 125.9 (C), 125.8 (C), 125.0 (CH), 120.6 (CH), 118.8 (C),
116.8 (CH), 114.6 (CH), 66.7 (CH2), 48.0 (CH2).

This paper discusses only the title compound 5 because compound 3 is already known.
The spectroscopy data of compound 3 are presented in Supplementary Materials (Figures S1–S4).
The HRMS spectrum of the title compound showed a positive molecular ion of [M + Na]+ at
m/z = 384.1215, suitable for a molecular formula of C22H19NO4, which corresponded to 14 equivalent
double bonds of (Supplementary Materials Figure S6). Analysis of the FTIR spectrum showed a
stretching vibration band of a C–H aromatic bond at νmax (cm−1) 3094, and followed subsequently
with a stretching vibration band of a C–H aliphatic bond at 2855, vibration band of ketone group
at 1724, vibration band of conjugated alkene at 1605, vibration band of C–C aromatic bond at 1572,
and stretching vibration band of C–O ether group at 1171 cm−1 (Supplementary Materials Figure S5).

From the 1H-NMR spectrum, the existence of a coumarin fragment substituted at position 3
was shown via four signals, those were three signals of aromatic protons at 7.66, 7.39, and 7.34 ppm
and a signal of a conjugated olefinic proton at 8.57 ppm. The presence of a chalcone scaffold with
E geometry was proved via two coupled (J = 15.6 Hz) olefinic proton signals at 7.85 and 7.79 ppm.
Furthermore, a para disubstituted benzene fragment was shown via two coupled (J = 8.9 Hz) aromatic
signals at 7.61 ppm and 6.89 ppm. The existence of a morpholine fragment was proved by two
triplet signals at 3.86 and 3.28 ppm with the integration of four for each signal representing two
symmetrical ethylene fragment (Supplementary Materials Figure S7a,b). The spectrum of 13C-NMR
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exhibited 18 signals indicating that the molecular structure consisted of 8 symmetrical carbon atoms
(Supplementary Materials Figure S8), whereas the correlation of the proton atoms with carbon atoms
were assigned using the 2-D NMR experiment of Heteronuclear Multiple Bond Correlation (HMBC)
(Supplementary Materials Figure S10) and Heteronuclear Multiple-Quantum Correlation (HMQC)
(Supplementary Materials Figure S9) as shown in Table 1 and Figure 2 below.

Table 1. NMR data of the title compound in CDCl3.

No. Atom δH (ppm) (mult, J Hz) δC (ppm) HMBC

2 159.6
3 125.8
4 8.57 (s, 1H) 147.8 C-2, C-3, C-4a, C-5, C-8a, C-9
4a 118.8
5 7.66 (m, 2H) overlapped with H-7 130.1
6 7.34 (t, J = 7.6 Hz, 1H) 125.0 C-4a, C-8
7 7.66 (m, 2H) overlapped with H-5 134.1
8 7.39 (d, J = 8.3 Hz, 1H) 116.8 C-4a, C-6
8a 155.3
9 186.3
10 7.79 (d, J = 15.6 Hz, 1H) 120.6 C-3, C-9, C-12
11 7.85 (d, J = 15.6 Hz, 1H) 145.6 C-9, C-10, C-12, C-13, C-17
12 125.9

13, 17 7.61 (d, J = 8.9 Hz, 2H) 130.9 C-11, C-13, C-14, C-15, C-16, C-17
14, 16 6.89 (d, J = 8.9 Hz, 2H) 114.6 C-12, C-13, C-14, C-16, C-17
2′, 6′ 3.86 (t, J = 5.3 Hz, 4H) 48.0 C-2’, C-3’, C-5’, C-6’
3′, 5′ 3.28 (t, J = 5.3 Hz, 4H) 66.7 C-2’, C-3’, C-5’, C-6’
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Figure 2. (a) Structure numbering, and (b) HMBC correlation of the title compound.

The anticancer activity of the prepared compound against cervix cancer cells line HeLa and breast
cancer cells line T47D was determined using an MTT assay, and revealed an IC50 of 0.90 µM for breast
cancer cells line T47D and of 2.32 µM for cervix cancer cell HeLa, and it can be considered as not active
as an anticancer compound (Supplementary Materials Table S1).

3. Materials and Methods

3.1. General

All reagents and solvents were provided from the commercial sources (E.Merck, Darmstadt,
Germany or Sigma Aldrich, St. Louis, MO, USA) and used without prior purification. The reaction
progress was monitored via a Thin Layer Chromatography (TLC) experiment using an aluminium
silica gel plate GF254 (0.25 mm) employing different solvents. The TLC spot was detected using UV
light (λ = 254 nm). The FTIR spectrum was recorded on a IRTracer100 spectrometer (Shimadzu, Kyoto,
Japan) using a diffuse reflectance method), whereas the mass spectrum was recorded on a HRESIMS
QTOF micrOTOF-Q II Bruker Compass (Billerica, MA, USA). The NMR spectrum (1H-, and 13C-APT)
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was recorded on a JEOL JNM-ECS400 spectrometer (at 400 and 100 MHz) (JEOL Ltd., Tokyo, Japan)
with CDCl3 as the solvent and internal standard.

3.2. Synthesis of 3-Acetylcoumarin 3

The mixture of 0.65 g (5 mmol) ethyl acetoacetate, 0.61 g (5 mmol) salicylaldehyde, and three
drops of triethylamine in 10 mL ethanol was refluxed in a round bottom flask for 8 h. The reaction
progress was monitored via TLC and was stopped when it completed. The precipitate was filtered off
and recrystallized using ethanol.

3.3. Synthesis of the Title Compound 5

The mixture of 3-acetylcoumarin 3 (0.1881 g; 1 mmol), 4-morpholinobenzaldehyde 4 (1.1911 g;
1 mmol), and pTSA (0.034 g; 0.2 mmol) in 10 mL ethanol was refluxed for 6 h. The reaction progress was
monitored with TLC and stopped at completion. The precipitate was then filtered off and subjected
to column chromatography for purification using n-hexane:ethyl acetate (3:2) as a mobile phase to
furnish the pure title compound.

3.4. Evaluation of Anticancer Activity

The evaluation of the anticancer activity of the title compound was conducted using an MTT
assay following the protocol of Tabata et al. [13]. The cancer cells were seeded in a 96-well plate at a
density of 1 × 104 cells/well with a phenol red-free RPMI (Roswell Park Memorial Institute medium)
1640 medium (containing 10% FBS (fetal bovine serum)) and maintained for 24 h. Subsequently,
the tested compound (various concentrations) was applied for 24 h. After addition of 0.5% MTT
solution, the incubation was continued for a further 4 h at 37 ◦C/5% CO2. The stop solution (0.04 N
HCl in isopropanol) was added to the culture medium to each well. Then, the absorbance at 570 nm
(peak) and 630 nm (bottom) was measured using an ELISA (Enzyme-Linked Immunosorbent Assay)
reader. It was conducted in triplicate. Doxorubicin was used as a positive control. The value of IC50

was determined using a probit analysis (SPSS 17, IBM Analytics, New York, NY, USA).

4. Conclusions

We have successfully synthesized a new compound (E)-3-[3-(4-morpholinophenyl)acryloyl]-2H-
chromen-2-one through a Claisen–Schmidt reaction using a molecular hybridization method between
3-acetylcoumarin, 4-morpholinobenzaldehyde, and pTSA as a catalyst.

Supplementary Materials: The following are available online, FTIR, HRESI-MS, 1H-NMR, 13C-NMR (APT)
spectra, and anticancer evaluation of the title compound are reported in the Supplementary Materials as
Figures S1–S10 and Table S1.
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