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Abstract: 4-(1H-[1,2,4]-Triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one (4) was synthesized with
a yield of 55% via ring-switching hydrazinolysis of 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]
triazol-6-one (3) in ethanol medium. The initial 1H-[1,2,4]-triazole-3-thiol (1) was modified via
a two-step reaction: S-alkylation with chloroacetic acid under Williamson reaction conditions,
and further one-pot cyclization–condensation with triethylorthoformate in the acetic anhydride
medium, yielding compound 3. The structures of compounds 3 and 4 were confirmed by LC-MS,
NMR spectra and a single X-ray diffraction analysis (for compound 4).
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1. Introduction

Recyclization and transformation reactions are powerful and useful tools in modern organic
and medicinal chemistry for the synthesis of hard-to-reach heterocycles. The compounds with an
“enone” system in their structure, such as 3-alkylaminopropen-1-one fragments, combine the ambident
nucleophilicity of enamines with the ambident eletrophilicity of enones. Due to these properties,
“enones” are often used as C3 building blocks for ring-switching reactions, yielding condensed and
non-condensed heterocycles [1–3]. However, the synthetic pathways for 3-alkylaminepropene-1-one
derivatives may be accompanied by a number of undesirable parallel processes such as methylation,
the formation of major side products, and difficulties in isolating the target compounds. At the same
time, the modification of 3-alkoxypropene-1-ones as the equivalent of 3-alkylaminepropene-1-one
for the construction of heterocycles in the recyclization reactions is undescribed. Therefore,
the utilization of 3-alkoxypropene-1-one analogs of corresponding enaminones can be a promising
alternative for the preparative organic chemistry of “enones”. To extend our work in the
development of effective synthetic methods for biologically active molecules based on functionalized
4-thiazolidinones and thiazolo[3,2-b][1,2,4]triazol-6-one [4–7], in this paper, we described the synthesis
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of hard-to-reach 4-(2H-[1,2,4]-triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one (4) from the derivative with a
3-alkoxypropene-1-one moiety, namely 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one (3).

2. Results and Discussion

2.1. Chemistry

1H-[1,2,4]-triazole-3-thiol (1) was used as the starting reagent for the synthesis of the target
compounds (Scheme 1). In the first step (2H-[1,2,4]-triazol-3-ylsulfanyl)-acetic acid (2) was synthesized
under Williamson reaction conditions from compound 1 via alkylation with chloroacetic acid.
Compound 2 was utilized without any purification in reaction with triethylorthoformate in acetic
anhydride, yielding 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one (3). In this case, acetic
anhydride plays a dual role as a cyclization agent for the thiazolo[3,2-b][1,2,4]triazol-6-one system
formation and as a catalyst for the condensation of a methylene group with triethylorthoformate.
Finally, compound 3 was refluxed with hydrazine hydrate in ethanol for 15 min, producing
pyrazol-3-one derivative 4 with a 55% yield.
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Scheme 1. Synthesis of 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one (3) and 
4-(1H-[1,2,4]-triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one (4). Reagents and conditions: (a) 1 (1.0 
eq.), chloroacetic acid (1.0 eq.), AcONa (2.0 eq.), AcOH, reflux, 2 h, 76%; (b) 2 (1.0 eq.), 
triethylorthoformate (1.25 eq.), Ac2O, reflux, 2 h, 78%; (c) 3 (1.0 eq.), hydrazine hydrate (1.0 eq.), 
EtOH, reflux, 15 min, 55%. 

The structure and purity of compounds 3 and 4 were confirmed by LC-MS, 1H and 13C NMR 
spectra (copies of spectra are presented in Supplementary). In the 1H NMR spectra of compounds 3 
and 4, protons of the triazol ring appeared as singlets at 8.50 (C-3) and 8.26 ppm (C-2), respectively. 
A chemical shift in the methylidene group of compound 3 has been assigned in a weak magnetic 
field at 8.41 ppm. A signal of the pyrazole ring proton at C-5 of compound 4 was observed as a 
singlet at 7.71 ppm. 

2.2. X-ray Crystallographic Analysis of the Compound 4 

X-ray analysis was used for the structure determination of compound 4. The ORTEP drawing 
and atomic numbering are shown in Figure 1. The performed X-ray studies revealed that the 
1,2,4-triazole system in the molecule of compound 4 undergoes a tautomeric transition in a solution. 
The crystals 4(A) (lath shape) and 4(B) (prism shape), obtained simultaneously from the same 
solution of CH3OH and H2O mixed at a 1:1 ratio, prove this conclusion. The lath-shaped crystals, 
4(A), have the tautomeric hydrogen atoms at N2′ while the prism-shaped ones, 4(B), have these 
hydrogen atoms located at N1 (Figure 1). 
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Scheme 1. Synthesis of 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one (3) and 4-(1H-[1,2,4]-
triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one (4). Reagents and conditions: (a) 1 (1.0 eq.), chloroacetic
acid (1.0 eq.), AcONa (2.0 eq.), AcOH, reflux, 2 h, 76%; (b) 2 (1.0 eq.), triethylorthoformate (1.25 eq.),
Ac2O, reflux, 2 h, 78%; (c) 3 (1.0 eq.), hydrazine hydrate (1.0 eq.), EtOH, reflux, 15 min, 55%.

The structure and purity of compounds 3 and 4 were confirmed by LC-MS, 1H and 13C NMR
spectra (copies of spectra are presented in Supplementary). In the 1H NMR spectra of compounds 3
and 4, protons of the triazol ring appeared as singlets at 8.50 (C-3) and 8.26 ppm (C-2), respectively.
A chemical shift in the methylidene group of compound 3 has been assigned in a weak magnetic field
at 8.41 ppm. A signal of the pyrazole ring proton at C-5 of compound 4 was observed as a singlet
at 7.71 ppm.

2.2. X-ray Crystallographic Analysis of the Compound 4

X-ray analysis was used for the structure determination of compound 4. The ORTEP drawing and
atomic numbering are shown in Figure 1. The performed X-ray studies revealed that the 1,2,4-triazole
system in the molecule of compound 4 undergoes a tautomeric transition in a solution. The crystals
4(A) (lath shape) and 4(B) (prism shape), obtained simultaneously from the same solution of CH3OH
and H2O mixed at a 1:1 ratio, prove this conclusion. The lath-shaped crystals, 4(A), have the tautomeric
hydrogen atoms at N2′ while the prism-shaped ones, 4(B), have these hydrogen atoms located at
N1 (Figure 1).

The X-ray studies has shown that proton tautomerism is observed in the 1,2,4-triazole
system. In the first case (crystal 4(A)), the 1,2,4-triazole system has a tautomeric structure with
hydrogen located at N1A and 4-sulfanyl-1,2-dihydro-3H-pyrazol-3-one moiety located at the C5
atom (form A) while in the other one (crystal 4(B)), the hydrogen atom is located at N1A and the
4-sulfanyl-1,2-dihydro-3H-pyrazol-3-one moiety at the C3 atom (form B) (Scheme 2).
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The positions of protons connected to N atoms in both heterocyclic systems of molecules in crystals
4(A) and 4(B), i.e., 1,2-dihydro-3H-pyrazol-3-one and 1,2,4-triazole systems, were obtained from the
difference Fourier maps and were refined freely. The presence of the H atom in the 1,3,4-triazole
system at N1A (the molecules in the crystal 4(A)) and at N1A (the molecules in the crystal 4(B)) is
supported by intermolecular hydrogen bonds N1A–H1A···O1ii (Table 1, Figure 2) and N1A–H1A···O1ii

(Table 1, Figure 3). In the mentioned bonds, the oxygen atom from the carbonyl group (O1) acts as a
proton acceptor.

Table 1. Hydrogen-bond geometry (Å, ◦) for 4(A) and 4(B).

Crystal Structure D–H···A D–H H···A D···A D–H···A

4(A) 1 N1–H1···N4Ai 0.88(3) 1.91(2) 2.7746(19) 168(3)
N1A–H1A···O1ii 0.89(3) 1.86(3) 2.7309(19) 166(2)

N2–H2···O1iii 0.83(3) 1.87(3) 2.7034(19) 176(2)
C3A–H3A···O1iv 0.95(3) 2.44(3) 3.177(2) 134.4(19)

4(B) 2 N1–H1···N4Ai 0.85(3) 1.91(3) 2.753(2) 169(3)
N1A–H1A···O1ii 0.88(3) 1.83(3) 2.7087(19) 178(4)

N2–H2···O2iii 0.93(3) 1.81(3) 2.736(2) 177(3)
O2–H21···N2A 0.83(3) 2.09(3) 2.9145(19) 173(3)
O2–H22···O1iv 0.81(3) 2.04(3) 2.8546(19) 178(4)

Symmetry codes: 1 (i) 2 − x, 1 − y, 2 − z; (ii) 1 − x, 1 − y, 1 − z; (iii) 2 − x, 2 − y, 2 − z; (iv) 2 − x, 1 − y, 1 − z.
2 (i) 1 − x, 1 − y, 1 − z; (ii) 1 − x, 1 − y, 2 − z; (iii) −1 + x, y, −1 + z; (iv) 1 − x, 2 − y, 2 − z.

The molecules of the investigated compound 4 in crystals 4(A) and 4(B) display similar
conformations. The dihedral angle between the heterocyclic rings is 89.51(6)◦ and 89.02(7)◦ in crystals
4(A) and 4(B), respectively. Moreover, the torsion angles of C4–S1–C5A–N1A (crystal 4(A)) and
C4–S1–C3A–N2A (crystal 4(B)) adopt values of−152.08(13)◦ and−159.47(14)◦, respectively. The study
revealed that the C3=O1 bond lengths in 4a and 4b are 1.2763(19) and 1.273(2)◦, respectively, which
indicates a significant elongation with respect to the value in the literature of the (C*)2-C=O bond
length 1.210(1) Å [8]. On the other hand, the observed values are typical when compared to C=O
bonds in the structures with 1,2-dihydro-3H-pyrazol-3-one system deposited in Cambridge Structural
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Figure 3. The hydrogen bonding in the crystal 4(B). The H atoms not involved in hydrogen bonds have
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In crystal 4(A), the molecules are connected by N1–H1···N4Ai and N2–H2···O1iii hydrogen
bonds into columns extending along the [101] direction. The columns are further connected
by N1A–H1A···O1ii hydrogen bonds into layers parallel to (101) plane. The layers linked with
C3A–H3A···O1iv hydrogen bonds form three-dimensional network (Table 1, Figure 2a,b). Crystal
4(B) has a form of a hydrate. The asymmetric unit contains one solute molecule (host) and one water
molecule (guest). In the crystal solute, molecules are connected by N1–H1···N4Ai and N1A–H1A···O1ii

hydrogen bonds into columns as in crystal 4(A), but in this case, they extend along the c axis. Water
molecules are also involved in the hydrogen bond formation. They act as a proton donor twice and as
a proton acceptor once. Taking part in N2–H2···O2iii, O2–H21···N2A and O2–H22···O1iv hydrogen
bonds, water molecules are a link connecting the mentioned columns into a three-dimensional network
(Table 1, Figure 3).

3. Experimental Setup

3.1. Materials and Methods

Melting points were measured in open capillary tubes on a BŰCHI B-545 melting point apparatus
(BÜCHI Labortechnik AG, Flawil, Switzerland) and are uncorrected. The elemental analyses (C, H, N)
were performed using the Perkin–Elmer 2400 CHN analyzer (PerkinElmer, Waltham, MA, USA) and
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were within ±0.4% of the theoretical values. The 1H and 13C NMR spectra were recorded on a Varian
Gemini spectrometer (Agilent, Santa Clara, CA, USA) at 400 and 100 MHz, respectively, using DMSO-d6

as a solvent and TMS as an internal standard. Chemical shift values are reported in ppm units with
use of δ scale. LC–MS spectra were obtained on a Finnigan MAT INCOS-50 (Thermo Finnigan LLC,
San Jose, CA, USA). Solvents and reagents that are commercially available were used without further
purification. Compound 3 (CAS 2111914-32-8) is also commercially available from Ambinter [10];
Aurora Fine Chemicals [11]; Zerenex Molecular Ltd. [12] and compound 4 (CAS 2176338-67-1) is also
commercially available from Aurora Fine Chemicals [11] although it is rather expensive.

3.2. Synthesis of 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one (3)

A mixture of (2H-[1,2,4]triazol-3-yflsulfanyl)-acetic acid (2) (10.0 mmol) and triethylorthoformate
(12.5 mmol) refluxed for 2 h in the 10 mL of acetic anhydride. Reaction mixture was cooled to the room
temperature and light brown precipitate was filtered off, washed with small portion of cold water and
recrystallized from ethanol.

Light brown needle-like crystals had the following yields: 78%, M.p.: 169–173 ◦C. 1H NMR
(400 MHz, DMSO-d6), δ: 8.50 (s, 1H, CH, triazole), 8.41 (s, 1H, CH), 4.47 (q, J = 6.9 Hz, 2H, OCH2), 1.32
(t, J = 6.9 Hz, 3H, CH3). 13C NMR (100 MHz, DMSO-d6), δ: 162.4, 159.5, 158.7, 156.8, 104.0, 73.7, 15.7.
LC-MS: m/z 198 (100%, (M + H)+). Anal. Calcd for C7H7N3O2S (197): C 42.63, H 3.58, N 21.31. Found:
C 42.40, H 3.50, N 21.50.

3.3. Synthesis of 4-(2H-[1,2,4]-triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one (4)

A mixture of 5-ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one (3) (10.0 mmol) and hydrazine
hydrate (10.0 mmol) were refluxed for 15 min in 10 mL of ethanol. After cooling to room temperature,
white precipitate was filtered off, washed with ethanol, recrystallized from a mixture of DMFA–ethanol
(1:1) and dried under vacuum.

White crystals had the following yields: 55%, M.p.: 223–225 ◦C. 1H NMR (400 MHz, DMSO-d6),
δ: 8.26 (br.s, 1H, CH, triazole), 7.71 (s, 1H, CH, pyrazol). 13C NMR (100 MHz, DMSO-d6), δ: 167.4,
161.8, 157.8, 136.1, 101.6. LC-MS: m/z 184 (100%, (M + H)+). Anal. Calcd for C5H5N5OS (183): C 32.78,
H 2.75, N 38.23. Found: C 32.90, H 2.90, N 38.40.

3.4. X-ray Diffraction Studies

3.4.1. Crystal Structure Determination of 4(A)

Crystal data. C5H5N5OS, Mr = 183.20, triclinic, space group P-1, a = 6.8457(4), b = 6.9769(5),
c = 8.4306(5) Å, α = 105.028(5), β = 96.908(5), γ = 111.870(6)◦, V = 350.18(4) Å3, T = 130.1(1) K, Z = 2.

Data collection. A colourless prism (MeOH/H2O) crystal of 0.13 mm × 0.13 mm × 0.03 mm
was used to record 5773 (Cu Kα radiation, θmax = 76.42◦) intensities on a Rigaku SuperNova Dual
Atlas diffractometer [13] using mirror monochromatized Cu Kα radiation from a high-flux microfocus
source. Accurate unit cell parameters were determined by least-squares techniques from the θ values of
3460 reflections, θ range 5.56–76.32◦. The data were corrected for Lorentz polarization and for absorption
effects [13]. The 1460 total unique reflections (Rint = 0.026) were used for structure determination.

Structure solution and refinement. The structure was solved by a dual-space algorithm (SHELXT) [14],
and refined against F2 for all data (SHELXL-97) [15]. The positions of all H atoms were obtained from
the difference Fourier maps and were refined freely. Final refinement converged with R = 0.029
(for 1392 data with F2 > 4σ(F2)), wR = 0.078 (on F2 for all data), and S = 1.048 (on F2 for all data).
The largest difference peak and hole was 0.325 and −0.325 eÅ3. The molecular illustrations were
drawn using ORTEP-3 for Windows [16].

The crystallographic data in the CIF form are available as Electronic Supplementary data from the
Cambridge Crystallographic Data Centre, deposition number CCDC-1859739; http://www.ccdc.cam.

http://www.ccdc.cam.ac.uk/conts/retrieving.html
http://www.ccdc.cam.ac.uk/conts/retrieving.html
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ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge, CB2 1EZ, UK; fax: 44 1223 336033; e-mail: deposit@ccdc.cam.uk).

3.4.2. Crystal Structure Determination of 4(B)

Crystal data. C5H5N5OS·H2O, Mr = 201.22, triclinic, space group P-1, a = 6.3934(4), b = 6.7817(5),
c = 10.0195(7) Å, α = 92.181(6), β = 107.435(6), γ = 102.234(6)◦, V = 402.65(5) Å3, T = 130.1(1) K, Z = 2.

Data collection. A colourless lath (MeOH/H2O) crystal of 0.22 mm × 0.15 mm × 0.03 mm was
used to record 6319 (Cu Kα radiation, θmax = 76.75◦) intensities on a Rigaku SuperNova Dual Atlas
diffractometer [13] using mirror monochromatized Cu Kα radiation from a high-flux microfocus source.
Accurate unit cell parameters were determined by least-squares techniques from the θ values of
2958 reflections, θ range 7.42–75.94◦. The data were corrected for Lorentz polarization and for absorption
effects [13]. The 1646 total unique reflections (Rint = 0.050) were used for structure determination.

Structure solution and refinement. The structure was solved by dual-space algorithm (SHELXT) [14],
and refined against F2 for all data (SHELXL-97) [15]. The positions of all H atoms obtained from
the difference Fourier maps and were refined freely. Final refinement converged with R = 0.035
(for 1519 data with F2 > 4σ(F2)), wR = 0.096 (on F2 for all data), and S = 1.066 (on F2 for all data).
The largest difference peak and hole was 0.494 and −0.399 eÅ3. The molecular illustrations were
drawn using ORTEP-3 for Windows [16].

The crystallographic data in the CIF form are available as Electronic Supplementary data from the
Cambridge Crystallographic Data Centre, deposition number CCDC-1859740; http://www.ccdc.cam.
ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge, CB2 1EZ, UK; fax: 44 1223 336033; e-mail: deposit@ccdc.cam.uk).

4. Conclusions

We have described a simply executable synthetic method for 4-(2H-[1,2,4]triazol-5-ylsulfanyl)-
1,2-dihydropyrazol-3-one via ring-switching hydrazinolysis of 5-ethoxymethylidenethiazolo[3,2-b]
[1,2,4]triazol-6-one. All studied reactions are convenient due to their conditions, short time, and simple
working procedures and allowed us to obtain the target products with high yields.

Supplementary Materials: The following are available online, Figure S1: LC-MS spectrum of compound 3,
Figure S2: 1H NMR spectrum of compound 3, Figure S3: 13C NMR spectrum of compound 3, Figure S4: LC-MS
spectrum of compound 4, Figure S5: 1H NMR spectrum of compound 4, Figure S6: 13C NMR spectrum of
compound 4.
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