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Abstract: An N-vinylation of imidazole and benzimidazole with a paramagnetic vinyl bromide
was investigated. Among the tested procedures, Pd-catalyzed reaction was the most powerful one.
The N-vinylation of 2-aminobenzimidazole with a β-bromo-α,β-unsaturated pyrroline nitroxide
aldehyde offered 1,1,3,3-tetramethyl-1H-benzimidazo[1,2-a]pyrrolo[3,4-e]pyrimidin-2(3H)-yloxyl
radical and the corresponding non-cyclized Schiff base. The reaction of a β-bromo-α,β-unsaturated
pyrroline nitroxide aldehyde with imidazole gave β-imidazo-α,β-unsaturated pyrroline nitroxide
aldehyde, which was reduced to the alcohol and converted to an unstable allyl chloride.
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1. Introduction

Nitroxides belong to a group of stable organic radicals, containing the nitroxyl group as a part
of aliphatic, aromatic, bicyclic, or heterocyclic scaffolds. The most commonly used nitroxides are
piperidine, pyrrolidine, pyrroline, isoindoline, oxazolidine, imidazoline, and imidazolidine nitroxides
with a broad range of applications. They are used as co-oxidants in organic chemistry [1], spin labels
on biomolecules [2], as antioxidants and antiproliferative drugs [3,4], mediators of polymerization [5],
redox active materials in batteries [6], sensor molecules [7], and as magnetic imaging (MRI) [8] and
electron paramagnetic imaging (EPRI) [9] contrast agents, just to name a few examples.

To fulfill these various requirements, a broad range of different nitroxides with miscellaneous
substitution patterns need to be prepared, sometimes by using complex synthetic procedures. In the
last two decades, transition-metal-catalyzed cross-coupling reactions have proven to be a powerful
tool in modifications of vinyl or aryl halide derived stable nitroxide free radicals [10–12] including
Heck-, Sonogashira-, and Suzuki-type cross-coupling reactions. In our laboratory, we used these
reactions to introduce new substituents onto the pyrroline or tetrahydropyridine ring and to construct
nitroxide-condensed heterocycles as well [13,14]. Very recently, we have reported Buchwald-Hartwig
amidation procedures for nitroxide-condensed lactam and pyrimidine ring constructions [15] starting
from β-bromo-α,β-unsaturated pyrroline nitroxide aldehyde. In this paper, we report the extension of
the Buchwald-Hartwig cross-coupling for the N-vinylation of imidazoles and benzimidazoles with
paramagnetic vinyl bromides.

2. Results and Discussion

Treatment of compound 1 [16] with imidazole (2a) or benzimidazole (2b) (1.0 equiv.) in the presence
of Cs2CO3 (1.2 equiv.), Pd(OAc)2 (3 mol %), and racemate 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl
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(racBINAP) (4 mol %) in anhyd. toluene at reflux temperature [17] yielded compound 3a in 45% yield
and compound 3b in 27% yield, respectively (Scheme 1). We note that our optimization attempts,
based on reports from Mao [18] and Ho [19], to utilize CuI catalysis or microwave assisted synthesis
have furnished, at best, only trace amounts of the desired products.
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Scheme 1. Cross-coupling reaction of β-bromo-α,β-unsaturated pyrroline nitroxide aldehyde with
imidazole and benzimidazole.

In order to explore the scope of the coupling reactions, N-vinylation of 2-aminobenzimidazole 4
with compound 1 was conducted under Pd-catalyzed conditions, as mentioned above, yielding the
desired polycondensed heterocyle 5 in 27% yield and Schiff base 6 in 37% yield as a by-product
(Scheme 2). The formation of Schiff base was revealed by mass spectrometry measurements,
which showed molecular ion peaks at 361/363 with 1/1 intensity.
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Scheme 2. Cross-coupling reaction of 2-aminobenzimidazole withβ-bromo-α,β-unsaturated pyrroline nitroxide.

To achieve reactive spin label compounds [20,21] aldehyde, 3a was reduced with NaBH4 in EtOH
at 0 ◦C to give alcohol 7, which was converted to allylic chloride 8 via mesylate by nucleophilic
substitution with LiCl in acetone (Scheme 3). However, this compound proved to be unstable,
as decomposition products appeared after several days despite low temperature (−18 ◦C) storage.
The freshly prepared chloromethyl compound 8 can be applied for irreversible SH specific labeling
of proteins.
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3. Materials and Methods

Melting points were determined with a Boetius micro-melting point apparatus (Franz Küstner
Nachf. K. G., Dresden, Germany) and were uncorrected. Elemental analyses (C, H, N, and S)
were performed with a Fisons EA 1110 CHNS elemental analyzer (Fisons Instruments, Milan,
Italy). Mass spectra were recorded on an Automass Multi spectrometer (ThermoQuest, CE,
Instruments, Milan, Italy) in EI mode. NMR spectra were recorded on a Bruker Avance III Ascend
500 spectrometer (Bruker BioSpin Corp., Karsluhe, Germany); chemical shifts are referenced to
TMS. The paramagnetic compound was reduced to N-hydroxylamine with five equivalents of
hydrazobenzene (DPPH)/radical. Measurements were performed at a probe temperature of 298 K in
CDCl3 or DMSO-d6 solution. ESR spectra were recorded on a Miniscope MS 200 (Magnettech Gmbh.,
Berlin, Germany) in CHCl3 solution. All monoradicals gave a triplet line at 14.4–15.6 G. IR spectra
were recorded with a Bruker Alpha FT-IR instrument (Bruker Optics, Ettlingen, Germany) with ATR
support (ZnSe plate). Flash column chromatography was performed on a Merck (Darmstadt, Germany)
Kieselgel 60 (0.040–0.063 mm). Compound 1 [16] was prepared as described previously; compound 5
was reduced to diamagnetic NH form by Fe/AcOH [22]. Other reagents were purchased from Sigma
Aldrich (St. Louis, MO, USA), Alfa Aesar (Karlsruhe, Germany), Acros (Geel, Belgium), and TCI
(Tokyo, Japan).

Pd-Catalyzed N-Vinylation, General Procedure (3a, 3b, 5, 6)

A round-bottomed flask was charged under argon with compound 1 (1.0 mmol), imidazole 2a or
benzimidazole 2b or 2-aminobenzimidazole 4 (1.0 mmol), anhyd. toluene (5 mL), Cs2CO3 (391 mg,
1.2 mmol), Pd(OAc)2 (7 mg, 0.03 mmol) and racBINAP (25 mg, 0.04 mmol). The mixture was stirred
and heated at reflux temperature for 20 h under Ar. After cooling down to room temperature,
the mixture was diluted with THF (10 mL), filtered through Celite, and the solvents were evaporated.
The residue was dissolved in CHCl3 (15 mL), and then washed with brine (5 mL). The organic
phase was separated, dried (MgSO4), and then activated MnO2 (17 mg, 0.2 mmol) was added.
To re-oxidize the hydroxylamine traces, O2 (200 cm3/min) was bubbled through the mixture for
15 min. The mixture was filtered, evaporated and purified by flash column chromatography with
hexane/EtOAc, followed by CHCl3/Et2O to give compounds 3a or 3b or 5 and 6.

3-Formyl-4-(1H-imidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-1-yloxyl Radical (3a): 105 mg
(45%), yellow solid, m.p. 92–93 ◦C, Rf 0.54 (CHCl3/Et2O/MeOH) (4:1.5:0.5). IR: 1653, 1626 cm−1.
1H-NMR (500 MHz, CDCl3 + (PhNH)2): δ = 8.58 (s, 1H), 7.66 (s, 1H), 7.29 (s, 1H), 7.14 (s, 1H),
1.50 (s, 6H), 1.38 (s, 6H), 13C-NMR (125 MHz, CDCl3 + (PhNH)2): δ = 186.1, 153.4, 138.0, 136.9, 130.8,
120.2, 68.8, 67.6, 24.2 (2 C), 23.7 (2 C). MS (EI): m/z (%) = 234 (29) [M]+, 220 (29), 204 (22), 108 (54),
42 (100). Anal. calcd. for C12H16N3O2: C, 61.52; H, 6.88; N, 17.94; Found: C, 61.44; H, 6.80; N, 17.90.

3-Formyl-4-(1H-benzimidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole-1-yloxyl Radical (3b): 76 mg
(27%), deep yellow solid, m.p. 156–157 ◦C, Rf 0.30 (CHCl3/Et2O) (2:1). IR: 1688, 1634, 1604 cm−1.
1H-NMR (500 MHz, DMSO-d6 + (PhNH)2): δ = 9.30 (s, 1H), 8.50 (s, 1H), 7.82 (d, 1H, J = 6.0 Hz),
7.41–7.34 (m, 3H), 1.45 (m, 6H), 1.33–1.20 (m, 6H), 13C-NMR (125 MHz, CDCl3 + (PhNH)2): δ = 187.3,
152.7, 143.4, 143.2, 139.3, 136.2, 124.7, 123.3, 120.4, 110.6. 69.3, 67.0, 24.8, 24.0 (3C). MS (EI): m/z
(%) = 284 (33) [M]+, 254 (11), 239 (25), 211 (27), 127 (100). Anal. calcd. for C16H18N3O2: C, 67.59; H,
6.38; N, 14.78; Found: C, 67.64; H, 6.20; N, 14.71.

1,1,3,3-Tetramethyl-1H-benzimidazo[1,2-a]pyrrolo[3,4-e]pyrimidin-2-yloxyl Radical (5): 76 mg (27%),
yellow solid, m.p. 251–252 ◦C, Rf 0.27 (CHCl3/Et2O) (2:1). IR: 1645, 1539, 1510 cm−1. 1H-NMR
of 5 NH-form (500 MHz, DMSO-d6): δ = 9.47 (s, 1H), 8.25 (d, 1H, J = 8.0 Hz), 7.82 (d, 1H, J = 8.0 Hz),
7.50 (t, 1H, J = 8.0 Hz), 7.39 (t, 1H, J = 8.0 Hz), 1.92 (s, 1H), 1.52 (s, 6H), 1.46 (s, 6H), 13C-NMR of 5
NH-form (125 MHz, DMSO-d6): δ = 178.5, 151.6, 144.4, 129.2, 128.0, 127.8, 125.9, 121.3, 119.5, 112.4,
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62.3, 58.7, 32.5 (2 C), 30.2 (2 C). MS (EI): m/z (%) = 281 (27) [M]+, 251 (71), 236 (42), 219 (55), 133 (100).
Anal. calcd. for C16H17N4O: C, 68.31; H, 6.09; N, 19.91; Found: C, 68.25; H, 6.10; N, 19.80.

3-[(1H-Benzimidazol-2-yl)iminomethyl]-4-bromo-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl Radical
(6): 134 mg (37%), yellow solid, m.p. 122–123 ◦C, Rf 0.32 (hexane/Et2O) (1:1). IR: 1583, 1514 cm−1.
1H-NMR (500 MHz, DMSO-d6 + (PhNH)2): δ = 9.22 (s, 1H), 7.67 (br s, 3H), 7.23 (d, 1H, J = 9.0 Hz),
1.50 (s, 6H), 1.28 (s, 6H), 13C-NMR (125 MHz, CDCl3 + (PhNH)2): δ = 159.0, 155.8, 143.6, 139.8, 71.1, 69.6,
24.9 (2 C), 24.8 (2 C). Remark: 2 quaternary carbons and 4 CH carbons are missing because of overlap
with DPPH signals. MS (EI): m/z (%) = 363/361 (7/7) [M]+, 333/331 (2/2), 252 (67), 41 (100). Anal. calcd.
for C16H18BrN4O: C, 53.05; H, 5.01; N, 15.47; Found: C, 53.10; H, 4.98; N, 15.41.

3-(Hydroxymethyl)-4-(1H-imidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl Radical (7):
To a stirred solution of compound 3a (234 mg, 1.0 mmol) in dry EtOH (5 mL), NaBH4 (46 mg, 1.5 mmol)
was added in one portion at 0 ◦C. After consumption of the starting material (~15 min), the reaction
mixture was quenched with aq. NH4Cl solution (3 mL), and the mixture was immediately diluted
with CHCl3 (10 mL). The organic phase was dried (MgSO4), filtered and evaporated. The residue
was purified by flash column chromatography (CHCl3/Et2O) to provide the title alcohol as a pale
yellow solid 215 mg (91%), m.p. 129–130 ◦C, Rf 0.32 (CHCl3/Et2O/MeOH) (4:1.5:0.5). IR: 3260, 1654,
1617 cm−1. 1H-NMR (500 MHz, DMSO-d6 + (PhNH)2): δ = 7.67 (s, 1H), 7.20 (s, 1H), 7.07 (s, 1H),
3.86 (s, 2H), 1.31 (s, 6H), 1.14 (s, 6H), 13C-NMR (125 MHz, CDCl3 + (PhNH)2): δ = 139.0, 138.4, 136.2,
129.1, 120.8, 68.1, 67.3, 54.2, 25.1 (2 C), 24.4 (2 C). MS (EI): m/z (%) = 236 (20) [M]+, 222 (12), 206 (3), 191 (16),
41 (100). Anal. calcd. for C12H18N3O2: C, 61.00; H, 7.68; N, 17.78; Found: C, 60.92; H, 7.70; N, 17.72.

3-Chloromethyl-4-(1H-imidazol-1-yl)-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-1-yloxyl Radical (8): To a stirred
solution of compound 7 (118 mg, 0.5 mmol) in dry CH2Cl2 (5 mL) and Et3N (60 mg, 0.6 mmol),
methanesulfonyl chloride (69 mg, 0.6 mmol) was added in one portion at 0 ◦C. After stirring at this
temperature for 1 h, the reaction mixture was washed with brine (5 mL), and the organic phase
was separated, dried (MgSO4), filtered, and evaporated. The residue was immediately dissolved
in dry acetone LiCl (42 mg, 1.0 mmol) was added and the mixture was stirred at 40 ◦C for 30 min.
After cooling, the solvent was evaporated, the residue dissolved in CHCl3 (10 mL) washed with water
(5 mL), and the organic phase was separated, dried (MgSO4), filtered, and evaporated. The residue
was purified by flash column chromatography (CHCl3/Et2O) to furnish compound 8, 99 mg (78%)
as a yellow solid, mp 105–107 ◦C, Rf 0.41 (CHCl3/Et2O/MeOH) (4:1.5:0.5). IR: 1682 cm−1. (EI): m/z
(%) = 254/256 (40/13) [M]+, 239/241 (20/6), 224/226 (5/2), 189 (74), 42 (100). Anal. calcd. for C12H17

ClN3O: C, 56.58; H, 6.73; N, 16.50; Found: C, 56.62; H, 6.75; N, 16.43.

4. Conclusions

The N-vinylation of imidazole and benzimidazole with activated paramagnetic vinyl bromide
(β-bromo-α,β-unsaturated pyrroline nitroxide aldehyde) was accomplished by Pd-catalyzed
Buchwald-Hartwig cross-coupling reaction, offering the desired products with moderate yields.
As far as we know, this is the first report on N-vinylation of heterocycles with nitroxide free radicals.
Currently, extending the scope of the developed methodology on other heterocycles, such as nucleic
bases [23], is being pursued in our laboratory.

Supplementary Materials: Copies of the 1H-NMR, 13C-NMR spectra are available online http://www.mdpi.
com/1422-8599/2018/1/M980/s1.
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10. Kálai, T.; Balog, M.; Jekő, J.; Hubbell, W.L.; Hideg, K. Palladium Catalysed Coupling Reactions of
Paramagnetic Vinyl Halides. Synthesis 2002, 34, 2365–2372.

11. Kokorin, A.I.; Zaripov, R.B.; Gromov, O.I.; Sukhanov, A.A.; Kálai, T.; Lamperth, É.; Hideg, K. Spin Density
Distribution in a Nitroxide Biradical Containing 13C-Enriched Acetylene Groups in the Bridge: DFT
Calculations and EPR Investigation. Appl. Magn. Reson. 2016, 47, 1057–1067. [CrossRef]

12. Keddie, D.J.; Johnson, T.E.; Arnold, D.P.; Bottle, S.E. Synthesis of profluorescent isoindoline nitroxides via
palladium-catalysed Heck alkenylation. Org. Biomol. Chem. 2005, 3, 2593–2598. [CrossRef] [PubMed]

13. Kálai, T.; Bognár, B.; Zsolnai, D.; Berente, Z.; Hideg, K. Synthesis of Nitroxide annulated carbocycles
and heterocycles. Synthesis 2012, 44, 3655–3660. [CrossRef]

14. Úr, G.; Kálai, T.; Hideg, K. Facile syntheses of 3,4-disubstituted pyrroline nitroxides and their further
synthetic applications. Tetrahedron Lett. 2016, 57, 778–780. [CrossRef]
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