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Abstract: Cyclo-condensation of N-methyl-2-bromoaniline with chlorocarbonylsulfenyl chloride
(CCSC) promoted by PhNMe2 and AlCl3, afforded N-methyl-2-bromo-2(3H)-benzothiazol-2-one in
good yield. Miyaura–Ishiyama cross-coupling of this brominated 2(3H)-benzothiazol-2-one with
bis(pinacolato)diborone [(pin)2B2] produced a novel N-methyl-4-(pin)B-2(3H)-benzothiazol-2-one
(3) using (pin)2B2 in the presence of the PdCl2(PPh3)2 catalyst. The obtained 4-(pin)B compound is
regarded as a new entry for the library of Suzuki–Miyaura cross-coupling reactions.
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1. Introduction

N-Substituted 2(3H)-benzothiazol-2-ones (1) are well-investigated S,N-containing heterocycles
that are incorporated into various pharmaceuticals and agrochemicals [1] (Figure 1). Representative
studies of 1 include the following: (1) tiaramide as a characteristic and useful anti-allergic drug [2];
(2) benazoline as a useful selective herbicide [3]; (3) chlobenthiazone as a potent agrochemical
fungicide [4,5]; and (4) natural mevashuntin as a unique metabolite of an hydroxymethylglutaryl-CoA
(HMG-CoA) reductase inhibitor [6] and as an efficient target for total synthesis [7]. Other notable
pharmaceuticals have also been reported [8–11].
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1. Introduction 

N-Substituted 2(3H)-benzothiazol-2-ones (1) are well-investigated S,N-containing heterocycles 
that are incorporated into various pharmaceuticals and agrochemicals [1] (Figure 1). Representative 
studies of 1 include the following: (1) tiaramide as a characteristic and useful anti-allergic drug [2]; 
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Figure 1. Representative biologically active compounds containing the N-substituted 2(3H)-
benzothiazol-2-one structure. 

Compared with simple unsubstituted, 6-chlorinated, and 5-acyl (or alkyl)-substituted N-alkyl-
2(3H)-benzothiazol-2-ones, the synthesis of more inaccessible 4-substituted analogues is quite limited 
due to the three stereocongested contiguous substituents on the 4,8,9-positions. To the best of our 
knowledge, only three compounds containing the 4-substituted N-alkyl-2(3H)-benzothiazol-2-one 
structure have been reported: benazoline [3], chlobenthiazone [4,5], and mevashuntin [6] (Figure 1).   

Figure 1. Representative biologically active compounds containing the N-substituted
2(3H)-benzothiazol-2-one structure.

Compared with simple unsubstituted, 6-chlorinated, and 5-acyl (or alkyl)-substituted
N-alkyl-2(3H)-benzothiazol-2-ones, the synthesis of more inaccessible 4-substituted analogues is quite
limited due to the three stereocongested contiguous substituents on the 4,8,9-positions. To the best of
our knowledge, only three compounds containing the 4-substituted N-alkyl-2(3H)-benzothiazol-2-one
structure have been reported: benazoline [3], chlobenthiazone [4,5], and mevashuntin [6] (Figure 1).
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Among several synthetic approaches, one of the most straightforward forms of
synthesis of N-alkyl-2(3H)-benzothiazol-2-ones utilizes cyclo-condensation of N-alkylaniline
with chlorocarbonylsulfenyl chloride (ClC=OSCl, abbreviated CCSC) (2) [12], a unique
commercially available bifunctional electrophilic reagent (Figure 2). The preparation of 2
on a >100 g scale was disclosed in the patent by the Bayer group [12]. Zumack and Kühle
addressed the notable chemistry of CCSC (2) in their impressive review [13]; 2 serves as
a key building blocks for various S,N-containing heterocyclic compounds. In connection
with our studies utilizing 2 for the synthesis of S,N-containing heterocycles with a -COS-
linkage, we reported on the synthesis of: (1) N-alkyl-2(3H)-benzothiazol-2-ones from
N-alkylanilines [14]; (2) N-chloromethyl-2(3H)-benzothiazol-2-ones from N-aryltriazines [15];
(3) three S,N-heterocyclic compounds utilizing α-methoxycarbonylsulfenylation of ketones and
aldehydes [16]; and (4) 1,3,4-(3H,6H)-thiadiazin-2-ones and 3(2H)-(N,N-dimethylamino)thiazolones
from hydrazones [17].

Our recent interest in cross-coupling reactions, directed towards medicinal and process
chemistry, [18–22], led us to investigate a concise synthesis of novel 4-(pinacolato)borane (pin)B
derivative 3 derived from N-methyl-4-bromo-2(3H)-benzothiazol-2-one (5), which could serve as a
convenient substrate for Suzuki–Miyaura cross-coupling reactions (Figure 2). A literature survey
using SciFinder® revealed that a 6-(pin)B analogue was reported as the synthetic intermediate for:
(1) inhibitors of matrix metalloproteinases (MMPs) and the production of tumor necrosis factor α (TNF
α) [23]; (2) treatment of inflammatory respiratory diseases [24]; (3) modulators of aldosterone synthase
and/or 11-β hydroxylase [25]; and (4) inhibitors of IKKβ (IκB Kinase-β) kinase [26]. Taking this background
into account, we planned the synthesis of the less accessible and novel 4-(pinB) regioisomer 3.
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gave N-methyl-2-bromoaniline (4) in 90% yield using the method of Barluenga and coworkers [27]. 
Cyclo-condensation of 4 using CCSC (2)/PhNMe2-combined reagents, followed by the treatment with 
AlCl3, afforded N-methyl-4-bromo-2(3H)-benzothiazol-2-one (5) in 54% yield. To prepare the boronic 
acid derivative we initially examined the lithiation of 5 using n-BuLi or t-BuMgCl at −78 °C, followed 
by treatment with B(OMe)3. The reaction was sluggish, however, and only gave trace amounts of 
boronic acid derivative 6. Thus, we turned our attention to investigating the more neutral Miyaura–
Ishiyama protocol using bis(pinacolato)diborone [(pin)2B2] [28] to obtain 4-(pinacolato)borane 
[(pin)B] derivative 3.  
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As expected, compared with the preparation of 6-(pin)B isomer, the reaction of 5 gave poor 
results under the identical conditions [23] due to higher stereocongestion; a considerable reduction 
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Scheme 1 shows the synthetic route for target compound 3. Monomethylation of 2-bromoaniline
gave N-methyl-2-bromoaniline (4) in 90% yield using the method of Barluenga and coworkers [27].
Cyclo-condensation of 4 using CCSC (2)/PhNMe2-combined reagents, followed by the treatment
with AlCl3, afforded N-methyl-4-bromo-2(3H)-benzothiazol-2-one (5) in 54% yield. To prepare
the boronic acid derivative we initially examined the lithiation of 5 using n-BuLi or t-BuMgCl at
−78 ◦C, followed by treatment with B(OMe)3. The reaction was sluggish, however, and only
gave trace amounts of boronic acid derivative 6. Thus, we turned our attention to investigating
the more neutral Miyaura–Ishiyama protocol using bis(pinacolato)diborone [(pin)2B2] [28] to obtain
4-(pinacolato)borane [(pin)B] derivative 3.
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As expected, compared with the preparation of 6-(pin)B isomer, the reaction of 5 gave poor results
under the identical conditions [23] due to higher stereocongestion; a considerable reduction to form
byproduct 7 was observed. To solve the problem, various Pd-catalysis conditions were screened and
these results are listed in Table 1. The most standard method using a PdCl2(dppf) catalyst under several
conditions resulted in the formation of 3 in a maximum 30% yield with 7 (7–78%) as main product
(entries 1–6). Pd catalysts bearing bisphosphine ligands such as PdCl2(dppe), PdCl2(dppb) gave
unsatisfactory results (entries 7,8). The use of a Pd2(dba)3 catalyst resulted in no reaction. Gratifyingly,
PdCl2(PPh3)2 using cyclopentyl methyl ether (CPME) solvent furnished 5 in 51% isolated yield.

Table 1. Screening of Pd catalysts for Miyaura–Ishiyama cross-coupling.
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On the other hand, Miyaura–Ishiyama cross-coupling using chlobenthiazone instead for 5 with
(pin)2B2 did not proceed due to lower reactivity of the chlorinated substrate.

2. Experimental Section

General

All reactions were carried out in oven-dried glassware under an argon atmosphere. Flash column
chromatography was performed with silica gel Merck 60 (230–400 mesh ASTM). TLC analysis was
performed on 0.25 mm Silicagel Merck 60 F254 plates. Melting points were determined on a hot
stage microscope apparatus (ATM-01, AS ONE, Osaka, Japan) and were uncorrected. NMR spectra
were recorded on a JEOL DELTA 300 or JEOLRESONANCE ECX-500 spectrometer (JEOL, Tokyo,
Japan), operating at 300 MHz or 500 MHz for 1H-NMR, and at 75 MHz or 120 MHz for 13C-NMR.
Chemical shifts (δ ppm) in CDCl3 were reported downfield from TMS (= 0) for 1H-NMR. For 13C-NMR,
chemical shifts were reported relative to CDCl3 (77.00 ppm) as an internal reference. IR Spectra were
recorded on a JASCO FT/IR-5300 spectrophotometer (JASCO Corporation, Tokyo, Japan). Mass spectra
were measured on a JEOL JMS-T100LC spectrometer (JEOL, Tokyo, Japan).
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temperature for 15 min. MeI (1.3 mL, 20.0 mmol) was slowly added at that temperature and the
mixture was allowed to warm to 20–25 ◦C. Stirring continued at same temperature for an additional
20 h. Water was added to the stirred mixture, which was extracted twice with ethyl acetate (AcOEt).
The organic phase was washed with water, brine, dried (Na2SO4) and concentrated. The resulting
crude oil was purified by SiO2 column chromatography (hexane/AcOEt = 10:1) to give the desired
product (3.54 g, 90%).

Yellow pale oil; 1H-NMR (500 MHz, CDCl3): δ = 2.89 (s, 3H), 4.34 (s, 1H), 6.56–6.59 (m, 1H),
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Bis(pinacolato)diboron ((pin)2B2) (190 mg, 0.75 mmol), KOAc (74 mg, 0.75 mmol), and bis(triphenylpho
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3. Conclusions

Straightforward synthesis of a novel 4-(pinacolato)borane [(pin)B] derivative of N-methyl-2(3H)
-benzothiazol-2-one was performed through two key steps: (1) cyclo-condensation of N-methyl
-2-bromoaniline with chlorocarbonylsulfenyl chloride (CCSC) to give N-methyl-2-bromo
-2(3H)-benzothiazol-2-one; and (2) Miyaura–Ishiyama cross-coupling of this intermediate to
produce 3-methyl-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2(3H)-benzothiazol-2-one.

Supplementary Materials: The following are available online at www.mdpi.com/1422-8599/2018/1/M976.
All materials (substrates and reagents) in this work are commercially available at an inexpensive price. Copies of
the 1H, and 13C-NMR spectra for compounds 3, 4, and 5 are available in the supplementary information.
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