
molbank

Short Note

9-(4-Hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-
hexahydro-1H-xanthene-1,8(2H)-dione

Camilo A. Navarro, Cesar Sierra and Cristian Ochoa-Puentes *

Received: 16 December 2015; Accepted: 5 January 2016; Published: 12 January 2016
Academic Editor: Norbert Haider

Grupo de Investigación en Macromoléculas, Departamento de Química, Universidad Nacional de
Colombia–Sede Bogotá, Carrera 45 # 26-85, A.A. 5997, Bogotá, Colombia; canavarrod@unal.edu.co (C.A.N.);
casierraa@unal.edu.co (C.S.)
* Correspondence: cochoapu@unal.edu.co; Tel.: +57-1-3165000; Fax: +57-1-3165220

Abstract: The title compound 9-(4-hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-
1H-xanthene-1,8(2H)-dione was synthesized in 72% yield through a simple, convenient and
environmentally friendly one-pot reaction between dimedone and 3,4-dihydro-2H-pyran in aqueous
citric acid. Additionally, a plausible reaction mechanism for the formation of the target xanthene
is proposed.
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1. Introduction

Xanthenes are a very interesting class of oxygen-containing heterocycles with a large
number of synthetic and naturally occurring derivatives [1–3] that exhibit diverse applications
in the field of medicinal chemistry [4,5] and materials science [6,7]. In particular, the
hexahydro-1H-xanthene-1,8(2H)-diones have shown potential as antioxidant, [8] anticancer [9,10]
and leishmanicidal agents [11].

The synthesis of hexahydro-1H-xanthene-1,8(2H)-diones is commonly performed by the
condensation of the appropriate aldehyde and dimedone or 1,3-cyclohexanedione under verious
various conditions which include the use of alternative solvents [12–15], homogeneous [16,17], and
heterogeneous [18–20] catalysts, and ultrasound- [21,22] or microwave-assisted [23] synthesis.

In this paper we describe the synthesis of 9-(4-hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-
hexahydro-1H-xanthene-1,8(2H)-dione, a novel hexahydroxanthene, using an environ-mentally
friendly one-pot reaction.

2. Results and Discussion

For the preparation of the target xanthene 3, one equivalent of 3,4-dihydro-2H-pyran 2 was
reacted with two equivalents of dimedone 1 in 0.3 M citric acid in a closed vessel at 90 ˝C during 8 h
(Scheme 1). After reaction completion (monitoring by thin layer chromatography) and purification by
recrystallization, the desired title compound 3 was isolated in 72% yield.

The title compound was characterized by IR, 1H-NMR, 13C-NMR and elemental analysis. As
expected, the IR spectrum shows the OH band at 3390 cm´1 and a strong absorption band at 1664
and 1643 cm´1 for the C=O stretching vibration. The proton NMR spectrum showed the following
signals: singlet at 1.10 ppm assigned to the CH3 groups, three multiplets centered at 1.15, 1.48 and
1.55 ppm assigned to three CH2 groups of the alkyl chain, a broad singlet at 1.60 ppm assigned to
the OH proton, two doublets at 2.24 and 2.30 ppm assigned to two CH2 groups of the xanthene core,
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a singlet at 2.37 ppm assigned to two CH2 groups of the xanthene core and two triplets at 3.55 and
3.78 ppm corresponding to CH2OH and CH groups respectively.Molbank 2016, 2016, M884 2 of 4 
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Scheme 1. Synthesis of 9-(4-hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-
1,8(2H)-dione 3.

A plausible mechanism for the formation of compound 3 is given in Scheme 2. First, the hydrolysis
in situ of the cyclic enol ether takes place yielding the cyclic hemiacetal 4 [24] which is in equilibrium
with its ring-opened form 5-hydroxypentanal 5 [25]. This aldehyde 5 forms the Knoevenagel adduct 6
by the reaction of the enolic form of dimedone promoted by citric acid. Then 6 may further undergo
Michael addition with another molecule of dimedone, in its enol form, to yield intermediate 7, which
after an intramolecular cyclization and dehydration gives compound 3.
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Scheme 2. Plausible mechanism for the formation of the new hexahydro-1H-xanthene-1,8(2H)-dione 3.

3. Experimental Section

3.1. General Information

Melting points, reported without correction, were measured using a Stuart SMP10 apparatus
(Stuart, Staffordshire, UK). The FT-IR spectra were obtained with a Shimadzu IR prestige 21
spectrophotometer (Columbia, MD, USA). 1H and 13C-NMR spectra were recorded with a Bruker
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AVANCE III system (Billerica, MA, USA) operating at 400 MHz, using residual (δH 7.26) and deuterated
solvent (δC 77.0) peaks of CDCl3 as reference standards. The elemental analysis was performed on a
Thermo Scientific Flash 2000 CHNS/O analyzer (Waltham, MA, USA). Reagents and solvents were
obtained from commercial sources and used without further purification. 0.3 M citric acid was prepared
using distilled and deionized water.

3.2. Synthesis of 9-(4-Hydroxybutyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-1H-xanthene-1,8(2H)-dione

A mixture of dimedone 1 (80.9 mg, 0.58 mmol) and dihydro-2H-pyran 2 (26.3 µL, 0.29 mmol) in
2 mL of 0.3 M citric acid was placed in a 10 mL glass vial. The vial was sealed and stirred at 90 ˝C for
8 h. After cooling the mixture the product was recovered by filtration. The solid was finally purified
by recrystallization from a mixture ethanol/water (1/1). The target compound 3 (72.0 mg, 72%) was
recovered as white crystals, m.p: 125–127 ˝C. FT-IR (ATR): 3514, 3390, 2958, 2933, 1664, 1643, 1616,
1348, 1192, 1136, 1064, 1001 cm´1. 1H-NMR (400 MHz, CDCl3) δ(ppm): 1.10 (s, 12H, 4CH3), 1.12–1.18
(m, 2H, CH2 alkyl), 1.46–1.51 (m, 2H, CH2 alkyl), 1.51–1.57 (m, 2H, CH2 alkyl), 1.60 (bs, 1H, OH), 2.24
(d, 2H, J = 16.2 Hz, CH2 xanthene), 2.30 (d, 2H, J = 16.2 Hz, CH2 xanthene), 2.37 (s, 4H, 2CH2 xanthene),
3.55 (t, 2H, J = 6.5 Hz, CH2OH), 3.78 (t, 1H, J = 4.5 Hz, CH). 13C-NMR (100 MHz, CDCl3) δ(ppm): 21.5,
25.2, 27.3, 29.4, 32.0, 32.6, 33.6, 40.9, 50.9, 62.7, 114.9, 164.0, 197.2. Anal. calcd for C21H30O4: C, 72.80; H,
8.73. Found: C, 72.53; H, 8.68.

Supplementary Materials: Copies of the IR, 1H, 13C-NMR spectra for compound 3 are available in the
supplementary information. They and the molfiles can be found at http://www.mdpi.com/1422-8599/
2016/1/M884.
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