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Abstract: 1,1,2,2,7,7,8,8-Octaethoxyocta-3,5-diyne has been observed as a minor product 

in several syntheses utilizing 3,3,4,4-tetraethoxybut-1-yne (TEB) as starting material. In 

order to access this highly functionalized diyne, we have developed a procedure that 

provides the title compound in excellent yield. 
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Acetylenes have for decades been very valuable substrates in organic synthesis [1–4]. The terminal 

acetylenes are particularly attractive because they can serve two purposes: first to achieve elongation 

of carbon chain [5–7] and second, to utilize the chemical potential of the carbon-carbon triple bond to 

introduce other functional groups and a variety of cyclic motifs. We have been interested in this sort of 

application of terminal alkynes for some time and for that purpose we have investigated the reactivity 

of one highly functionalized acetylene in particular, viz. 3,3,4,4-tetraethoxybut-1-yne (TEB) (1) [8], 

toward a number of reagents under a variety of conditions. This has eventually led to the synthesis of a 

range of different products including functionalized allylic and homoallylic alcohols [9,10], highly 

substituted furans [11,12], amino-substituted furfurals [13], functionalized triazoles [14], deoxygenated 

carbohydrate analogues [9,15–17], various heterocycles [18–20], and functionalized 1,3-dithianes [17,21].  

During these studies TEB has been exposed to many different reaction conditions, and formation of 

by-products has of course been impossible to avoid. One by-product that has been obtained in variable 

amounts every time a copper salt has been involved, is 1,1,2,2,7,7,8,8-octaethoxyocta-3,5-diyne (2) 

(Scheme 1), a dimer of TEB with no less than four protected carbonyl groups and a conjugated diyne 

moiety along an eight-carbon chain. The formation of 2 was first observed when attempts were made 
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to react TEB with sterically demanding 2-substituted aryl halides in Sonogashira-type reactions (cross-

coupling by copper halides and organic-based Pd catalysts) [22]. Homocoupling of terminal acetylenes 

is a well-known side reaction under such conditions and the dimerization has been shown to involve 

oxidation of copper acetylides formed in-situ [5,7,23–30].  
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Scheme 1. Formation of 1,1,2,2,7,7,8,8-octaethoxyocta-3,5-diyne (2). 

Further investigations aiming at obtaining 2 in high yield revealed that dimerization of TEB 

occurred in the absence of a palladium catalyst as well, and the reaction was particularly successful 

and furnished the dimer in high yield when TEB was reacted with an amine, e.g., triethylamine, in the 

presence of copper(I) iodide and air. If carried out under pure oxygen, the reaction is faster but the 

yield is not significantly better. These reaction conditions are similar to those prevailing in the classical 

Glaser reaction, which takes place facilitated by copper salts in present of amines [24,25]. 

Diyne 2 is a fascinating molecule and considering the rich chemistry so far revealed by the TEB 

moiety itself [18], we feel 2 merits thorough studies under reaction conditions beyond those studied in 

our research group. 

Experimental Section 

1,1,2,2,7,7,8,8-Octaethoxyocta-3,5-diyne (2). 3,3,4,4-Tetraethoxybut-1-yne (1) (0.23 g, 1.0 mmol) was 

dissolved in DMF (10 mL) at 50 °C in a round-bottom flask with access to air. CuI (3.8 mg, 2 mol %) 

and triethylamine (0.152 g, 1.5 mmol, ~0.18 mL) were added and the mixture was stirred at 50 °C for 

20 h. The crude product mixture was then filtered and washed with a saturated aqueous solution of 

NaCl (25 mL). The phases were separated and the aqueous phase was extracted with diethyl ether  

(3 × 10 mL). The organic extracts were combined, washed with a saturated aqueous solution of 

NaHCO3 (25 mL), dried over MgSO4 (anhyd.), filtered, and concentrated under reduced pressure on 

rotary evaporator. Isolation by flash chromatography (SiO2, hexanes/ethyl acetate = 95:5) afforded the 

title compound as a colourless liquid (0.21 g, 90%).  

FT-IR (film): νmax 2978 (m), 2931 (m), 2894 (s), 2188 (w), 1600 (w), 1635 (w), 1478 (w), 1447 (m), 

1387 (m), 1334 (m), 1119 (s), 1080 (s), 932 (w), 885 (m), 771 (w) cm−1. 

1H NMR (CDCl3, 300 MHz): δ (ppm) 4.39 (s, 2H, CH(OCH2CH3)2), 3.86–3.61 (m, 16H, OCH2CH3), 

1.29–1.18 (m, 24H, OCH2CH3). 

13C NMR (CDCl3, 75 MHz): δ (ppm) 103.5 (2 CH), 98.2 (2 C [sp3]), 78.1 (2 C [sp]), 74.9 (2 C [sp]), 

64.7 (2 CH2), 64.5 (2 CH2), 59.4 (2 CH2), 59.2 (2 CH2), 15.1 (4 CH3), 15.0 (4 CH3).  
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MS (TOF EI+): m/z 413 (20), 355 (10), 311 (10), 103 (100), 75 (50). 

HRMS (TOF ESI+): m/z 481.27788; HRMS Calcd for C24H42O8Na+ [M + Na]+ m/z 481.27774, found 

m/z 481.27788. 
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