

Short Note

$2-\{5-(1,3-Benzodioxol-5-yl)-1-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]-4,5-dihydro-1$ *H* $-pyrazol-3-yl}pyrazine$

Balapragalathan Thappali Jothikrishnan *, Sriram Narasimhan and Suban Syed Shafi

Department of Chemistry, Islamiah College, Vaniyambadi- 635 751, Tamilnadu, India

* Author to whom correspondence should be addressed; E-Mail: bala.pragalathan@gmail.com.

Received: 9 March 2010/Accepted: 17 March 2010 / Published: 19 March 2010

Abstract: A simple method for the synthesis of a pyrazolyl thiazole derivative containing a piperonal moiety was developed. Thus, 2-{5-(1,3-benzodioxol-5-yl)-1-[4-(4-chlorophenyl)-1,3-thiazol-2-yl]-4,5-dihydro-1*H*-pyrazol-3-yl}pyrazine was synthesized using microwave irradiation and characterized by NMR, IR and LCMS data.

Keywords: 5-(1,3-benzodioxol-5-yl)-3-(pyrazin-2-yl)-4,5-dihydro-1*H*-pyrazole-1-carbothioamide; 4-chlorophenacyl bromide; microwave

Introduction

Heterocyclic molecules can act as highly functionalized scaffolds and are known pharmacophores of a number of biologically active and medicinally useful molecules [1,2].

Electron-rich nitrogen heterocyclics play an important role in diverse biological activities. Introducing a pyrazolidinone [3,4] ring in place of a β -lactam ring in penicillins and cephalosporins [5] results in enhanced activity. A second nitrogen in the five-membered ring also influences the antibacterial or pharmacokinetic properties [6–8]. 2-Pyrazoline derivatives have also been reported in the literature to exhibit various pharmacological activities such as antimicrobial [9–14], anti-inflammatory [15] and antihypertensive [16].

On the other hand, sulfur and/or nitrogen heterocycles that possess pharmacological activities widely occur in nature in the form of alkaloids, vitamins, pigments and as constituents of plant and animal cells. Penicillins containing a thiazole ring system (thiazolidine) [17] are also important naturally occurring products. Thiazoles and their derivatives are found to be associated with various biological activities such as antimicrobial [18–24], antituberculosis [25], and anti-HIV [26] activities.

Molbank **2010** M668 (Page 2)

In the interest of the above suggestion, we planned to synthesize a system that combines together two biolabile components which are 2-pyrazoline and thiazole. We are hereby reporting a simple method for synthesizing a pyrazolyl thiazole derivative, using a microwave condition, which does not need any catalyst. The work-up procedure is simple and convenient.

Scheme

Experimental

A solution of (1) (0.327 g, 1 mmol) which was prepared by the reaction between corresponding chalcone and thiosemicarbazide and (2) (0.223 g,1 mmol) in absolute ethanol (5 mL) was placed in a microwave Pyrex vial and irradiated with 200W for 10 min at 150 $\,^{\circ}$ C (final temperature). The reaction mixture was cooled to room temperature and concentrated. The solid obtained was washed with a little amount of hexane, filtered and dried under vacuum to give a yellow-coloured solid (3).

Yield = 80%

M.p. = $186.6 \, \text{°C}$

¹H NMR (400 MHz, CDCl₃): δ = 9.38 (s, 1H), 8.52–8.50 (m, 2H), 7.64–7.61 (m, 2H), 7.31–7.28 (m, 2H), 6.90 (q, 1H), 6.84 (s, 2H), 6.79–6.77 (d, J = 8 Hz, 1H), 5.92 (s, 2H), 5.68 (q, 1H), 3.97 (dd, J = 12 Hz, 18 Hz, 1H), 3.49 (dd, J = 4 Hz, 16 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃): 164.17, 150.73, 150.49, 148.08, 147.31, 146.66, 143.80, 143.76, 143.23, 135.03, 133.30, 133.19, 128.62, 127.16, 120.36, 108.27, 106.81, 104.43, 101.16, 64.79 and 42.68.

MS: m/z (ES), 462 $[(M+1)^{+}]$.

IR: cm⁻¹ = 3849, 3624, 3115, 2921, 2301, 1574, 1538, 1512, 1501, 1487, 1469, 1431, 1401, 1371, 1318,1 288, 1270, 1241, 1192, 1166, 1148, 1135, 1116, 1085, 1073, 1038, 1009, 970, 938, 896, 844, 824, 757, 732, 681, 630, 404.

Elemental analysis: calculated for $C_{23}H_{16}ClN_5O_2S \cdot 0.25 H_2O$ (466.44): C, 59.23%; H, 3.57%; N, 15.01%; S, 6.87%. Found: C, 59.35%; H, 3.59%; N, 14.52%; S, 7.02%.

Molbank **2010** M668 (Page 3)

Acknowledgements

The authors thank Syngene Intl. Ltd. Bangalore, India for providing the analytical facilities to carry out the research work and also thank Islamiah College for providing all other facilities.

References and Notes

- 1. Silverman, R.B. *Organic Chemistry of Drug Design and Drug Action*; Academic Press: San Diego, CA, USA, 1992.
- 2. Thompson, L.A.; Ellman, J.A. Synthesis and Applications of small molecule libraries. *Chem. Rev.* **1996**, *96*, 555–600.
- 3. Jungheim, L.N.; Sigmund, S.K.; Fisher, J.W.. Bicyclic pyrazolidinones, a new class of antibacterial agent based on the β-lactam model. *Tetrahedron Lett.* **1987**, 28, 285–288.
- 4. Jungheim, L.N.; Sigmund, S.K.; Jones, N.D.; Swartzendruber, J.K. Bicyclic pyrazolidinones, steric electronic effects on antibacterial activity. *Tetrahedron Lett.* **1987**, 28, 289–292.
- 5. Boyd, D.B., Morin, R.B., Gorman M. *Theoretical and Physicochemical studies on β-Lactam Antibiotics* in *β-Lactam Antibiotics, Chemistry and Biology*; Academic press: New York, NY, USA, 1982; Volume 1, 437–545.
- 6. Jungheim, L.N.; Holmes, R.E.; Ott, J.L.; Ternansky, R.J.; Draheim, S.E.; Neel, D.A.; Stepherd, T.A.; Sigmund, S.K. Abstracts of 26th Interscience Conference on Antimicrobial Agents and Chemotherapy, New Orleans, LA, USA, 28 September–1 October 1988, Paper 601.
- 7. Jungheim, L.N.; Holmes, R.E.; Ternansky, R.J.; Stepherd, T.A.; Neel, D.A.; Draheim S.E.; Pike, A.J.; Wu, C.Y.E. Abstracts of 28th Interscience Conference on Antimicrobial Agents and Chemotherapy, Los Angels, CA, USA, 23–26 October 1988, paper 240.
- 8. Ternansky, R.J.; Draheim, S.E. [3.3.0] Pyrazolidinones: An efficient synthesis of a new class of synthetic antibacterial agents. *Tetrahedron Lett.* **1990**, *31*, 2805–2808.
- 9. Sangwan, N.K.; Dhindsa, K.S.; Malik, O.P.; Malik, M.S. Chim. Acta Turc. **1983**, 11, 65–72.
- 10. Safak, C.; Tayhan, A.; Sarac, S. Synthesis of some 1-Acetyl-3,5-diaryl-2-pyrazoline derivatives and their antimicrobial activities. *J. Indian Chem. Soc.* **1990**, *67*, 571–574.
- 11. Nauduri, D.; Reddy, G.B. Antibacterials and Antimycotics: Part 1: Synthesis and Activity of 2-Pyrazoline Derivatives. *Chem. Pharm. Bull. (Tokyo)* **1998**, *46*, 1254–1260.
- 12. Grant, N.; Mishriky, N.; Asaad, F.M.; Fawzy, N.G. Pyridines and pyrazolines from salicylic acid derivatives with propenone residue and their antimicrobial properties. *Pharmazie* **1998**, *53*, 543–547.
- 13. Turan-Zitouni, G.; Özdemir, A.; Güven, K. Synthesis of some 1-[(N,N-disubstituted thiocarbamoylthio)acetyl]-3-(2-thienyl)-5-aryl-2-pyrazoline derivatives and investigation of their antibacterial antifungal activities. *Arch. Pharm. Pharm. Med. Chem.* **2005**, *338*, 96–104.
- 14. Turan-Zitouni, G.; Özdemir, A.; Kaplancıkli, Z.A.; Chevallet, P.; Tunali, Y. Synthesis and antimicrobial activities of some 1-[(N,N-disubstituted thiocarbamoylthio)acetyl]-3,5,diaryl-2-pyrazolines. *Phosphorus Sulfur Silicon Relat. Elem.* **2005**, *180*, 2717–2724.
- 15. Nasar, M.N.A.; Said, S.A. Novel 3,3a,4,5,6,7- Hexahydroindazole and arylthiazolyl pyrazoline derivatives of anti- inflammatory agents. *Arch. Pharm. Pharm. Med. Chem.* **2003**, *336*, 551–559.

Molbank **2010** M668 (Page 4)

16. Turan-Zitouni, G.; Chevallet, P.; Kiliç, F.S.; Erol, K. Synthesis of some thiazolyl- pyrazoline derivatives and preliminary investigation of their hypotensive activity. *Eur. J. Med. Chem.* **2000**, *35*, 635–641.

- 17. Gupta, R.R.; Kumar, M.; Gupta, V. *Heterocyclic Chemistry Five- membered Heterocycles*; Springer- Verlag: Berlin, Heidelberg, New York, 1999; Volume 2, p. 416.
- 18. Onoe, H.; Takahashi, Jpn. Kokai. Tokyo Koho JP 03 87,841, 1994; Chem. Abstr. 121, 205336.
- 19. Fhamy, H.T. Synthesis and antimicrobial screening of some novel thiazoles, dithiazoles and thiazolylpyridines. *Pharmazie* **1997**, *52*, 750–753.
- 20. Pandeya, S.N.; Sriram, D.; Nath, G.; Declercq, E. Synthesis, antibacterial, antifungal and anti-HIV activities of Schiff and Mannich bases derived from isatin derivatives and N-[4,(4-Chlorophenyl)thiazol-2-yl]thiosemicarbazide. *Eur. J. Pharm. Sci.* **1999**, *9*, 25–31.
- 21. Ateş, Ö.; Altintas, H.; Ötük, G. Synthesis and antimicrobial activity of 4-Carbethoxymethyl-2-[(α-haloacyl)amino]thiazoles and 5-non-substituted/substituted 2-[(4-Carbethoxymethylthiazol-2-yl)imino]-4-thiazolidinones. *Arzneimittelforschung* **2000**, *50*, 569–575.
- 22. Lakhan, R.; Sharma, B.P.; Shukla, B.N. Synthesis and antimicrobial activity of 1-aryl-2-amino-3-(4-arylthiazol-2-yl)/(benzothiazol-2-yl)guanidines. *Farmaco* **2000**, *55*, 331–337.
- 23. Kaplancikli, Z.A.; Turan-Zitouni, G.; Revial, G.; Güven, K. Synthesis and study of antibacterial and antifungal activities of novel 2-[[(benzoxazole/benzimidazole-2-yl)sulfanyl]acetylamino] thiazoles. *Arch. Pharm. Res.* **2004**, *27*, 1081–1085.
- 24. Turan-Zitouni, G.; Demirayak, Ş.; Özdemir, A.; Kaplancıklı, Z.A.; Yıldız, M.T. Synthesis of some 2-[(benzazole-2-yl)thioacetylamino]thiazole derivatives and their antimicrobial activity and toxicity. *Eur. J. Med. Chem.* **2004**, *39*, 267–272.
- 25. Ashtekar, D.R.; Fernandes, F.; Khadse, B.G.; Shirodkar, M.V.A. A rapid method for the evaluation of new antituberculosis agents. *Chemotherapy* **1987**, *33*, 22–27.
- 26. Maass, G.; Immendoerfer, U.; Koenig, B.; Leser, U.; Mueller, B.; Goody, R.; Pfatt, B. Viral resistance to the thiazolo- iso- indolinones, a new class of nonnucleoside inhibitors of HIV virus type 1 reverse transcriptase. *Antimicrob. Agents Chemother.* **1993**, *37*, 2612–2617.
- © 2010 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).